“我们很高兴与Kyowa Kirin合作,鉴于他们以社区为导向的核心使命,通过提供具有改变生活价值的创新药物来使您面对面的微笑,这在Crysvita和其他罕见疾病药物的商业化中取得了成功。Bridgebio的愿景是帮助人们获得新颖的治疗和试验,因此我们很高兴这种合作将确保为患有Achondroplasia的儿童以及最终在日本其他骨骼发育不良的儿童开发InfigraTinib。” Bridgebio的首席执行官兼创始人Neil Kumar博士说“通过与Kyowa Kirin合作,我们希望显着加速Infigratinib的发展,从而有可能为日本的恶性肿瘤,下软骨质和最终的骨骼倍增倍数提供选择。我们听到社区的需求 -
运动控制是协调肌肉产生复杂运动的艺术,是生物智能的奇迹。从芭蕾舞演员的优雅舞蹈到灵巧的物体,这些动作是大脑在掌握运动任务中众多自由度的能力的证明(1-4) - 这可能需要多年的培训和教练来掌握,涉及熟练和隐含的技能学习(5,6)。然而,了解大脑如何实现熟练行为仍然是神经科学中的基本挑战之一。虽然已经取得了显着的进步,但大部分研究已被确定为相对简单的行为任务(5-7)。此外,运动控制和学习的计算建模通常仅限于简化的肌肉骨骼系统模型(例如,(8 - 11))。由于这些实验和计算局限性,更复杂的技能(例如灵巧对象操纵)的复杂性在很大程度上仍未知明。
再生电位PBSC是一种干细胞 - 一种基本和非专业细胞,具有开发(或分化)为其他类型细胞(例如骨骼和软骨)的潜力。PBSC已被证明具有产生间充质干细胞的潜力,间充质干细胞与肌肉骨骼再生特别相关,因为它们已经被启动以区分软骨细胞(软骨细胞)和骨细胞(骨细胞)(成骨细胞)。它们的再生潜力,结合了轻松收获和处理它们的能力,使PBSC成为有助于肌肉骨骼再生的出色候选者。更重要的是,可以在单个程序中大量收获PBSC,然后安全地存储几年,从而在初次治疗后数月后重复治疗。
纤维型生成祖细胞(FAP)保持体内稳态中健康的骨骼肌,但通过促进脂肪生成和纤维化来促进慢性损伤的肌肉变性。为了发现这些干细胞如何从促再生到促成角色的角色转变为对人类FAP的单细胞mRNA测序,来自健康和受伤的人类肌肉跨损伤,重点是肩袖撕裂。我们识别出具有祖细胞,掺杂或纤维化基因特征的多个亚群。我们利用全光流式细胞仪基于高度多重的蛋白表达来识别不同的FAP亚群。损伤严重程度增加了FAP亚群的脂肪生成承诺,并由DLK1的下调驱动。用DLK1在体外和体内对FAP进行处理可减少脂肪形成和脂肪浸润,这表明在FAPS亚群体中,受伤期间,DLK1减少了DLK1可能会驱动变性。这项工作突出了干细胞如何通过动态调节亚种群的命运承诺来取决于组织的各种功能,这可以针对靶向改善受伤后的患者预后。
摘要:2型糖尿病(T2D)具有复杂的病理生理学,使疾病很难建模。我们旨在开发一种新型模型,用于在体外模拟T2D,包括高血糖,高脂血症和靶向肌肉细胞的胰岛素水平可变升高。我们研究了啮齿动物骨骼(C2C12)和心脏(H9C2)肌管中不同T2D模拟条件下不同T2D模拟条件下不同T2D模拟条件下的胰岛素耐药性(IR),细胞呼吸,线粒体形态测定法和相关功能。生理控制包括5毫米葡萄糖,甘露醇作为渗透对照。对模拟高血糖,将细胞暴露于25 mm的葡萄糖。 进一步的治疗包括胰岛素,棕榈酸酯或两者。 短期(24小时)或长期(96小时)暴露后,我们进行了放射性葡萄糖摄取和线粒体功能测定法。 使用电子显微照片评估线粒体大小和相对频率。 C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。 C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。 相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。 两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。对模拟高血糖,将细胞暴露于25 mm的葡萄糖。进一步的治疗包括胰岛素,棕榈酸酯或两者。短期(24小时)或长期(96小时)暴露后,我们进行了放射性葡萄糖摄取和线粒体功能测定法。使用电子显微照片评估线粒体大小和相对频率。C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。 C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。 相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。 两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。C2C12和H9C2细胞用胰岛素和/或棕榈酸酯和棕榈酸酯和Hg长期处理的IR显示了IR。C2C12暴露于T2D模拟条件的肌管显示ATP连接的呼吸和备用呼吸能力显着降低,线粒体占据的细胞质区域较少,导致线粒体功能障碍。相反,H9C2肌管表现出升高的ATP连接和最大呼吸,并增加了线粒体占据的细胞质区域,表明在T2D环境中更好地适应了压力和补偿性脂质氧化。两种细胞系都表现出在T2D模拟治疗后的肿胀/空泡线粒体肿胀的较高分数。我们稳定且可重现的T2D体外模型迅速诱导了IR,ATP连接呼吸的变化,能量表型的变化以及线粒体形态的变化,与患有T2D患者的肌肉相当。因此,我们的模型应允许研究疾病机制和潜在的新靶标,并允许筛选候选治疗化合物。
Selcuk等人,2008年使用血浆灭活或消除了两种致病性曲霉属。和Penicillum spp。,人为地感染了豆类和谷物种子的种子。治疗使病原体的攻击降至1%以下,但保留了种子的发芽质量。
与年龄相关的骨骼肌再生能力下降是多因素的,但免疫功能障碍对再生衰竭的影响尚不清楚。巨噬细胞对于肌肉再生过程中有效的碎片清除和 MuSC 活动至关重要,但控制肌肉修复过程中巨噬细胞功能的调节机制在很大程度上尚未探索。在这里,我们发现了一种在骨骼肌再生过程中起作用的免疫调节新机制,该机制在老年动物中被破坏,并且依赖于巨噬细胞功能的调节。免疫调节剂 MANF 在年轻小鼠的肌肉损伤后被诱导,但在老年动物中则不会,其表达对于再生成功至关重要。老年肌肉中的再生障碍与修复相关的髓系反应缺陷有关,类似于 MANF 缺乏模型中发现的缺陷,可以通过 MANF 输送得到改善。我们提出恢复 MANF 水平是改善老年肌肉髓系反应和再生能力的可行策略。
摘要:表观转录组学是指通过影响 RNA 功能的 RNA 修饰和编辑来对基因表达进行转录后调控。已描述了多种类型的 mRNA 修饰,其中包括 N6-甲基腺苷 (m6A)、N1-甲基腺苷 (m1A)、7-甲基鸟苷 (m7G)、假尿苷 (Ψ) 和 5-甲基胞苷 (m5C)。它们改变 mRNA 结构,从而改变稳定性、定位和翻译效率。表观转录组的扰动与人类疾病有关,因此为潜在的治疗方法提供了机会。在这篇综述中,我们旨在概述表观转录组标记在骨骼肌系统中的功能作用,特别是在胚胎肌生成、肌细胞分化和肌肉稳态过程中。此外,我们探索了高通量表观转录组测序数据来识别肌肉特异性基因中的 RNA 化学修饰,并讨论了可能的功能作用和潜在的治疗应用。