摘要:新能源储能对于实现“双碳”目标和以新能源为主体的新型电力系统至关重要,但目前其成本较高、经济性较差。本文基于全生命周期视角对新能源储能的平准化成本进行研究,基于LCOE和学习曲线法,构建了新型储能平准化成本估算模型和预测模型。基于电化学新能源储能的最新发展现状,测算了锂离子电池、液流铝电池、液流锌电池的储能平准化成本,分析了各类储能的成本构成及占比,并在此基础上对锂离子电池的平准化成本进行了预测。对比分析显示,锂离子电池的每千瓦时平准化成本最低。本文为源网、负荷三侧储能的建设与布局提供了一定的参考。
注意:EIA在2029年没有水力发电的估计。他们的确从2032年开始持续预测,价格为57.37美元。太阳能光伏成本以净AC(交替的电流)功率表示,可用于网格的安装容量。资料来源:美国能源信息管理局(EIA),级别的成本和级别的避免了新一代成本,特殊制表。
Abbreviations AECO Alberta Energy Company AC Alternating Current AGC Automatic Generation Control bbl Barrels of Oil BTM Behind-the-Meter CBOC Conference Board of Canada CCGT Combined Cycle Gas Turbine CCS Carbon Capture and Storage CO 2 e Carbon Dioxide equivalent for greenhouse gas emissions CT Combustion Turbine CPI Consumer Price Index DR Demand Response DSM Demand Side Management DER Distributed Energy Resource ELCC Effective Load Carrying Capacity EV Electric Vehicle E3 Energy and Environmental Economics GDP Gross Domestic Product GT Gas Turbine GWh Gigawatt hour GHG Greenhouse Gas HVDC High Voltage Direct Current IRP Integrated Resource Plan kW Kilowatt LCOC Levelized Cost of Capacity LCOE Levelized Cost of Energy LDV Light Duty Vehicle LT Long-Term PLEXOS module for capacity expansion LOLE Loss of Load Expectation MLAP Mactaquac Life Achievement Project MHDV Medium重型车辆MT中期PLEXOS模块,用于日期生产成本优化MW MWATT MWH MWH MWH MEGAWATT HOUR MMBTU MMBTU MMBTU MMBTU MMBTU NERC NERC北美电力可靠性委员会NPCC NPCC东北电力协调委员会OBPS OBPS OBPS OBPS OBPS OBPS OBPS OBPS OBPS基于PPA PPA PPA PPA PPA PPA PPA PPA RETION PPA PPA RETION PPA PPA RETION PPA PPA RETION PPA PPA RETION PPA PPA PPA ROCTINE WACC加权平均资本成本
GHI全球水平辐照Capex资本支出repex置换费用OPEX运营费用O&M运营和维护LCOE LCOE升级的电力LOCH升级NPC NPC NPC NET NET的成本EFL Entural Ensce EFL Energy Efl Energy Effi fiji Limited RAB调节资产基础资产基础FCCC FCCC FIJI竞争和消费者委员会的电力委员会能源资源
摘要:作为主要能源消费者之一,烹饪是日常生活中必不可少的一部分。不可再生的烹饪燃料来源,例如木头或牛粪造成危险污染和全球生态系统差。在过去的几十年中,太阳能烹饪经历了许多改进。太阳能烹饪主要被用作减少石油和天然气依赖性,增加环境可持续性并减少全球变暖威胁的替代品。本文讨论了盒子型太阳能炊具的最新发展。本文讨论了影响与太阳能烹饪系统相关的性能,能量和exergy的各种参数的原理和分类。In line with the sustainable development goals of the UN agenda 2030 and especially the heed to the accomplishment of SDG 7 and SDG 13, various economic factors, such as the payback period (PP), net present value (NPV), benefit–cost (B–C) ratios, internal rate of return (IRR), levelized cost of heat (LCOH), and levelized cost of cooking a meal (LCCM) have been discussed.还提出了环境分析,以显示太阳能烹饪的总体好处。评论还重点介绍了盒子型太阳能炊具,其组件及其传热特性的当前开发。已经讨论了各种几何修饰,使用反射器的使用以及改善烹饪的透明绝缘材料。可以说,有了更好的政策影响,可以实现太阳能炊具的社会和经济可接受性。已经获得了最新研究的太阳能炊具的改进,以相变材料(潜热存储)的形式存储的概念,这也有效,这也有助于晚期烹饪。
BAU Business As Usual BESS Battery Energy Storage System CAGR Compound Annual Growth Rate CAPEX Capital Expenditures CUF Capacity Utilization Factor CV Commercial Vehicle DOE Department of Energy EFL Energy Fiji Limited EIA Energy Information Administration EV Electric Vehicle FBOS Fiji Bureau of Statistics FDoE Fiji Department of Energy FJD Fijian Dollar FoR Forced Outage Rates GDP Gross Domestic Product GoF Government of Fiji GWh Giga Watt Hours IDO Industrial Diesel Oil IPP Independent Power Producer ISO International Standards Organization kA kilo Ampere km 2 Square Kilo Meter Kv Kilo Volt kVA Kilo Volt Ampere kW Kilo Watt kWH Kilo Watt hour LCOE Levelized Cost of Energy LCOS Levelized Cost of Storage LFA Load Flow Analysis LGBR Load Generation Balance Report LLLG Three phase to ground fault LOLP Loss of Load Probability LT-PDP Long Term-Power Development Plan MILP混合整数线性编程MIPSO MIPOWER Power System优化MU百万单位MVA MEGA伏特Amperes MW MEGA MEGA WATT MWH MWH MWH MEGA WATT HOUR N/A不适用PCI人均每个CAPITA NOAKE NOVIN PEUM PEATIAL ENDIAL ENDIAL ENDIAL MEDIDE PLF植物载荷
摘要 利用气体液化的液态空气储能 (LAES) 因其技术成熟、能量密度高、地理限制少、使用寿命长而受到广泛关注。另一方面,LAES 尚未商业化,最近才开始开发。因此,很少有研究对 LAES 进行经济分析。在本研究中,计算了平准化电力成本,并与其他储能系统进行了比较。结果,LAES 的平准化电力成本为 371 美元/兆瓦时。这比 LiCd 电池、VRFB 电池、铅酸电池和 NaS 电池分别低约 292 美元/兆瓦时、159 美元/兆瓦时、118 美元/兆瓦时和 3 美元/兆瓦时。此外,成本比 Fe-Cr 液流电池和 PHS 高出约 62 美元/兆瓦时和 195 美元/兆瓦时。根据主要经济因素对平准化电力成本进行了敏感性分析,并通过蒙特卡罗模拟进行了经济不确定性分析。累积概率曲线显示了 LAES 的平准化电力成本,反映了空气压缩机成本、电力成本和备用小时费用的价格波动。
图 1:氢能经济经济性总结 ...................................................................................................... 1 图 2:氢气的多种用途 ...................................................................................................... 2 图 3:大型项目氢气生产的全球平准化成本预测范围 ............................................................................................. 3 图 4:基于距离和体积的 H 2 运输成本,$/kg,2019 年 ............................................................................. 4 图 5:估计向大型工业用户提供的氢气成本,2030 年 ............................................................................................. 5 图 6:估计向大型工业用户提供的氢气成本,2050 年 ............................................................................. 5 图 7:2050 年各行业使用 1 美元/千克氢气减排的边际减排成本曲线 ............................................................................................. 6 图 8:钢铁的平准化成本:氢气与煤炭 ............................................................................. 7 图 9:美国 SUV 的总拥有成本,2030 年 ............................................................................. 7 图 10:氢燃料涡轮发电的平准化电力成本图 11:2050 年不同情景下氢气的潜在需求 ...................................................................................................... 8 图 12:在 1.5 度情景下主要国家通过风能和光伏发电产生 50% 电力和 100% 氢气的能力的指示性估计 ................................................................................................................................ 9
•(i)( - a-)拥塞成本节省的测试必须包括分析归因于拟议项目的水平范围的年度拥塞成本节省是否等于或大于提议的项目的最初三年年收入需求的平均值。•(ii)生产成本节省的测试必须包括分析拟议项目归因于范围的ERCOT范围范围的年度生产成本储蓄是否等于或大于拟议项目的一年级年度收入需求,该项目的输电线路是该项目的一部分。