电子设备的尺寸正在接近原子大小,这迫使人们制定新的指导方针来应对 22 纳米以下设计的挑战。随着芯片制造深入纳米领域,工艺变异缓解和辐射硬度成为相关的可靠性要求。受工艺变异影响的集成电路可能无法满足某些性能或功率标准,从而导致参数产量损失并需要重新设计几个步骤 [1]。传统上,软错误 (SE) 是由来自太空或地面辐射的高能粒子与硅之间的相互作用引起的 [2]。然而,技术缩放引入了电荷共享现象和脉冲猝灭 [3]。此外,工艺变异会改变线性能量传输 (LET),从而引发软错误。其后果是暂时的数据丢失,甚至在地面层面也会导致系统行为出现严重故障。
我们提供一篇博士论文,研究液氦温度下半导体器件的老化机制。基于电气测量,确定并深入研究了 4.2 K 下的相关物理老化机制。开发或扩展了低温老化模型。过去二十年来,量子计算一直是基础研究中一个非常活跃的领域。在过去的 5 年里,它已经达到了成熟的水平,商业应用触手可及。英飞凌希望通过研究不同的量子系统及其在低温下的电子环境来推动这一发展,以便操纵和读取这些系统。在半导体器件中,许多物理效应会导致器件电气参数的漂移,进而导致整个电路故障。预测这种漂移在整个生命周期中的现象对于确保电路的功能性非常重要。对于量子计算应用,需要研究低温下的退化效应,并分别开发物理模型。
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
在虚拟现实(VR)系统中,使用红外摄像头跟踪眼动运动的系统,凝视测量的精度对于可靠检测眼运动障碍至关重要。评估基于HMD VR的医疗设备系统NEOS TM的凝视测量能力和凝视精度的一致性,在最佳条件下,我们使用了一种机器人设置,该设置提供了模仿人眼运动的优势,其运动可变性最小。,我们通过计算Intarclass Intarace相关系数(ICC),测量值(SEM)和Bland-Altman分析来评估NEOS™的凝视测试两次,以不同的噪声水平为13个模拟条件,然后评估了每个噪声水平。我们发现NEOS™的凝视精度具有出色的测试可靠性(ICC> 0.99,SEM = 0.04),并通过Bland-Altman分析观察到了第一和第二凝精度测量之间的良好协议。凝视所有九个基本方向的NeoS™的高ICC和低SEM均显示了其眼睛跟踪的可靠性和测量一致性。在临床设置中使用时,这是针对基于HMD的VR设备的眼睛跟踪应用的关键功能。使用机器人眼客观地验证基于VR的眼球跟踪器可以适用于其他设备。未来的研究将研究不同人口中测量值的纵向稳定性。
摘要 - 我们旨在开发一项新的领域测试,以评估年轻人的下LIMB肌肉疲劳性。在实验中 - a,我们开发并确定了间歇性等距壁-SQUAT测试的能力,诱导肌肉疲劳性的进行性水平,这是通过使用两个智能手机应用于可行性目的的智能手机应用的动力学检测到的蹲下高度(SJ H)和位置时间(SJ H)和位置时间(STS T)的动力学的能力。在实验中 - b,参与者在两天不同的日期进行了相同的测试,以进行可靠性评估。在同局,精疲力尽和2分钟后注册了我们疲劳性指标变化的动力学。评估了最小可检测的变化(MDC 95)和绝对(CV TE)和相对(ICC 3-1)的可靠性系数。在实验中 - a,我们报告了整个任务中SJ H和STS t的性能逐渐降低,以耗尽的平均变化为22±11%和+31±13%。个体数据分析显示,SJ H和STS T的性能下降大于85%和95%的参与者的MDC 95。在实验中 - b,我们的疲劳性指标的变化在同局,精疲力尽和2分钟后的SJ H(ICC 3-1> 0.97; CV TE <7.5%)和STS T(ICC 3-1> 0.92> 0.92; CV TE <3.3%)时表现出极好的会议可靠性。该测试是可行且可靠的,这使得评估应用中的肌肉疲劳非常有前途(例如,临床)和实验室环境。
物理不可克隆函数 (PUF) 是一种加密原语,可作为低成本、防篡改的唯一签名和密钥生成以及设备识别机制。环形振荡器 (RO) PUF 是研究最多的 PUF 架构之一,这主要是因为它的简单性。在现代电路中广泛采用 PUF 时,可靠性起着重要作用。由于当今 PUF 的可靠性问题,其实施成本使其不适合工业应用,如 [1] 所示。这项工作的目标是定义一种基于测量的振荡频率差异来评估 RO-PUF 响应可靠性的方法。除了对挑战的响应之外,该方法还将在运行时提供响应是否可靠的信息。Maes 在 [2] 中是最早展示 PUF 可靠性和其熵之间的权衡的人之一。Schaub 等人在 [3] 中提供了一种用于延迟 PUF 的通用概率方法,其中可靠性和熵之间的权衡基于信噪比 (SNR) 建模,并通过实际测量进行验证。Martin 等人的另一项工作 [4] 提供了一种基于 FPGA 提取数据的 PO-PUF 可靠性评估指标。这里,可靠性和熵之间的权衡是根据实验数据估算的。还需要提到的是,可靠性受老化的影响很大 [5],但其影响很难研究。相比之下,我们提出了一种可以改进最先进技术的方法,因为它提供了一种基于不同环境条件下的离线研究来动态估计可靠响应的方法。
摘要 - 这项工作对在DNA存储系统中成功检索使用MDS代码(例如Reed-Solomon代码)的数据的概率进行了理论分析。我们在独立和相同分布(I.I.D.)替换错误,重点是结合内部和外部MDS代码的常见代码设计策略。我们的分析表明,这种概率如何取决于诸如测序读数的总数,它们之间的分布,内部代码和外部代码的速率以及替换误差概率。这些结果提供了可行的见解,可在可靠性约束下优化DNA存储系统,包括确定可靠数据检索所需的测序读取数量的最小数量,并确定内部和外部MDS代码速率之间的最佳平衡。
数字电路和系统的高可靠性得益于多种方法。这些方法确保设计在规定的条件下和预计的使用寿命内发挥其功能。它们涵盖了与电子产品的制造和现场运行相关的不同方面。例如,洁净室控制杂质,工业控制系统实现生产一致性;封装前后的老化和测试确保在对电路施加应力后检测到设计弱点和制造缺陷。在将半导体推向市场之前,所有这些方法都是必要的,但它们并非万无一失。尽管小型化提供了许多优势,但每个新的 CMOS 节点都面临可靠性问题,因为这一趋势正在迅速接近操作和制造的物理极限 [1]。数字系统在其使用寿命的三个阶段可能会出现故障,如图 1 中的浴盆曲线所示 [39]。早期故障被称为早期死亡率;工作寿命期间发生随机故障,磨损故障
表现出布尔行为的基因调节网络,例如和或或XOR经常设计多年。但是,实现更复杂的功能,例如控制或计算,通常需要顺序的电路或所谓的状态机。对于这样的电路,输出既取决于输入和系统的当前状态。尽管仍然可以通过类比与数字电子产品进行类比设计此类电路,但生物学的某些特殊性使任务更加棘手。在本文中评估了其中两个的影响,即生物过程的随机性和调节机制响应中的不均匀性。数值仿真指出,即使是从理论的角度来看,即使设计GRNS功能的高风险也是如此。还讨论了提高此类系统可靠性的几种解决方案。
执行功能(EF)是指一组高级认知过程,这些过程允许个人以目标指导的方式管理和调节自己的思想,情感和行为(Diamond,2013)。这些过程对于各个生命领域的自适应功能至关重要,包括学术成就,社会互动和行为调节(Jacobson等,2011)。ef包括几个关键的认知成分,包括抑制(抑制冲动的能力),认知灵活性(转移注意力和适应不断变化的需求的能力),计划和组织(制定和执行策略的能力),以及工作记忆的能力(在思想中保持和操纵信息的能力(karbach和Unger,2014年)。这些认知能力在学术成功和行为中起着至关重要的作用,研究表明,强大的执行职能技能与更好的学校表现呈正相关,而儿童和青少年的行为问题较少(Jacobson等,2011)。