1 1葡萄和葡萄酒研究所,广西农业科学学院,南宁530007,中国2个国家主要的保护和利用亚热带农用生物库,甘蔗生物学的主要实验室广东现代农业实验室,合成生物学的主要实验室,农业和农村事务部,农业基因组学研究所,中国农业科学院农业学院,深圳518000,中国518000,中国4 liuzhou水果生产技术指导站Feicui Liang,Zhuyifu Chen *相应的作者,电子邮件:xuxiaodong@caas.cn; 18977986390@163.com1葡萄和葡萄酒研究所,广西农业科学学院,南宁530007,中国2个国家主要的保护和利用亚热带农用生物库,甘蔗生物学的主要实验室广东现代农业实验室,合成生物学的主要实验室,农业和农村事务部,农业基因组学研究所,中国农业科学院农业学院,深圳518000,中国518000,中国4 liuzhou水果生产技术指导站Feicui Liang,Zhuyifu Chen *相应的作者,电子邮件:xuxiaodong@caas.cn; 18977986390@163.com
Audrey Lee 1,Katharine Floyd 2,Shengyang Wu 1,1,1,1,1,1,1,1,1,5 Harolds,5,5,5,5,5,Anna Pavenko 5,Victor Lujan 1 Garry P. Nolan 3,Prabhu Arunachalam 1,Mehul Suthar 2,BaliAudrey Lee 1,Katharine Floyd 2,Shengyang Wu 1,1,1,1,1,1,1,1,1,5 Harolds,5,5,5,5,5,Anna Pavenko 5,Victor Lujan 1 Garry P. Nolan 3,Prabhu Arunachalam 1,Mehul Suthar 2,Bali
用电流感应的自旋轨道扭矩 1 切换铁磁层的磁化需要破坏对称性,要么通过平面磁场,要么在无场 2 切换的情况下通过设备不对称。在这里,Liang 等人仔细控制晶体 3 位错的 Burgers 矢量以打破平面对称性并允许在 4 Pt/Co 异质结构中无场切换磁化。5
黄,中Yi; ding,Yao;歌曲,鸟着;王,林; Geng,Ruizhe;他,洪林; DU,Shan;刘,夏;天,钟; Liang,Yongsheng;周,凯文; Chen,Jie电子和计算机工程学院,北京大学基于点注释弱监督的核分段:一种粗到精细的自我刺激的学习策略
Xianzhu Zhang 1, 2, 3 # , Wei Jiang 3, 4 # , Xinyu Wu 1, 2, 3 # , Chang Xie 1, 2, 3 , Yi Zhang 1, 3 , Yuqing Gu 1, 2, 3 , Zihao Hu 1, 3 , Liying Li 1, 2, 3 , Renjie Liang 1, 2, 3 , Tao Zhang 2, 3 , Wei Sun 1, 2, 3 , Jingchun Ye 2, 3 , Wei Wei 3, 5 , Xiaozhao Wang 1, 2, 3 , Yi Hong 1, 2, 3 , Shufang Zhang 2, 3 , Youzhi Cai 1, 3 , Xiaohui Zou 1, 3 , Yihe Hu 1 , Hongwei Ouyang 1, 2, 3,
• 王新月、侯少辉、张莉、李琳玲、梁振、张志国和黄干。实时 eeg 锁相反馈控制用于 alpha 幅度和频率调节:openbci 实现。2020 年第九届生物信息学和生物医学科学国际会议,第 65-70 页,2020 年
Esther Wortmann *1,Annika Osswald *2,David Wylensek 1,Stephanie Kuhls 3,Olivia I.3 Coleman 3,Quinten Ducarmon 4,Wei Liang 5,Nicole Treichel 1,Fabian Schumacher 6,4 Colin Volet 7,Silke Matysik 8,Karin Kleigrewe 9,Michael Gigl 9,Sascha Rohn 10 Zeller 4,Dirk Haller 3.11,Krzysztof Flisikowski 5,Soeren Ocvirk **,2.11,Thomas Clavel **,***,***,1 7
maggie@lingenfelder-lab.com从简单的愿望到“看到原子”到探索绿色能源应用的电子旋转的旅程,这反映了我们对过去几十年来原子和亚原子世界的理解时的深刻进步。这些进步不仅在智力上令人满意,而且具有应对全球挑战的潜力,例如可持续能源。在我们的研究小组中,我们通过创建自定义的纳米结构材料来应对可持续能源的挑战,从而从自然界(生物仿生)中汲取灵感,从而整合了界面化学和表面物理学的基本原理。在此演示文稿中,我在光合作用过程中汲取灵感,以设计驱动电催化能量转换过程的土壤丰富的材料:例如CO 2电源和水分裂。使用尖端扫描探针显微镜使我们能够通过原位成像可视化纳米级的动态电化学过程[1]。我们收集的详细原子尺度信息激发了我们的进一步探索:使用利用电子旋转来增强电催化转换过程的非常规策略[2-4]。这种创新的方法使我们能够开发出最先进的材料,这些材料的电催化效率高两到三倍[3-4]。参考文献[1] Hai Phan,T.,Banjac,K.,Cometto,F。等。在Operando CO2电气中,电势控制的Cu-nanocuboid和石墨烯覆盖的Cu-nanocuboid的出现。纳米莱特2021 21,2059-2065。[2] Vensaus,P.,Liang,Y.,Ansermet,JP。等。通过磁场对质量传输的影响增强电催化。自然社区。2024,15,2867。[3] Liang,Y.,Banjac,K.,Martin,K。等。通过手性分子官能化杂交2D电极的手性分子官能化增强了电催化氧的进化。自然公共2022,13,3356。[4] Y. Liang,M。Lihter,M。Lingenfelder,用于清洁能量的电催化中的自旋控制。isr。J. Chem。 2022,62,e202200052。J. Chem。2022,62,e202200052。
Aihua Dong, HiSilicon Bright Ho, MA-tek Charvaka Duvvury, IEEE Fellow Chun-Yu Lin, National Taiwan Normal University David Pommerenke, Graz University of Technology Geng Yang, UNISOC Guanghui Liu, ViVo Guangyi Lu, HiSilicon Guoyan Zhang, Silergy Corp Hailian Liang, Jiang Nan University Jun Wang, SMIC Ming-Dou Ker, National Yang Ming Chiao Tung University Meng Miao, GLOBALFOUNDRIES Mengfu Di, Skyworks Ming Qiao, UESTC Mingliang Li, HiSilicon Nanhai Xiao, YINT Electronics Qi-an Xu, CXMT Shen-Li Chen, National United University Shurong Dong, Zhejiang University Tung-Yang Chen, AIP Technology Corporation Wei Gao, HiSilicon Wei Huang, ESDEMC Technology Wei Liang, GLOBALFOUNDRIES Wenqiang Song, NuVolta Technologies Xiaozong Huang, CETC-24 Xin Gao, HiSilicon Xin Wu, East China Normal University Yang Wang, Xiang Tan University Yi-Ting Lee, Siemens Yuan Wang, Peking University Zhaonian Yang, Xi'an PolyTech University Zhiguo Li, YMTC Zhiwei Liu, UESTC
