摘要:锂离子电池(LIB)具有高能量/功率密度,低自我放电速率和较长循环寿命的优势,因此被广泛用于电动汽车(EVS)。但是,在低温下,Libs的峰值功率和可用能量急剧下降,充电期间锂镀层的风险很高。这种不良的性能显着影响电动汽车在寒冷天气中的应用,并极大地限制了高纬度地区的电动汽车的促进。最近这项挑战引起了很多关注,尤其是调查低温下LIB的性能下降并探索解决方案。但是,在此主题上存在有限的评论。在这里,我们彻底回顾了有关电池性能降低,建模和预热的最新技术,旨在推动有效的解决方案来解决LIBS的低温挑战。我们概述了在低温下LIB的性能限制,并量化了在低温下LIB的(DIS)充电性能和电阻的显着变化。考虑到低温影响因素的各种模型也被制表和总结,并改进了描述低温性能的建模。此外,我们对现有的加热方法进行了分类,并强调诸如供暖率,能耗和终生影响等指标,以提供对加热方法的基本见解。最后,概述了当前关于低温LIB的研究的局限性,并提供了未来研究方向的前景。
摘要:在过去的20年中观察到了锂离子电池(LIB)的指数市场增长;仅在2017年,大约有670,000吨的Libs才出售。由于消费者对电动汽车的兴趣日益增加,汽车制造商的最新参与,储能设施的最新发展以及政府对运输电力的承诺,因此这种趋势将继续持续。尽管在LIB商业化后早些时候开发了一些有限的回收过程,但在可持续发展的背景下,这些过程并不足够。因此,已经建立了显着的效果,以替代常用的倍率递质回收方法,以较不利的方法,例如水透明术,尤其是基于硫酸盐的浸出或直接回收。基于硫酸盐的浸出是目前用于回收LIB的唯一大规模水透明方法,并作为目前正在开发的几个试点或示范项目的基线。相反,大多数项目和过程仅着眼于NI,CO,MN和LIS的恢复,并且浪费了磷酸铁磷酸锂(LFP)电池的浪费。尽管这种电池类型并未主导LIB市场,但其在LIBS废物流中的存在引起了一些技术问题,从而影响了当前回收过程的利用率。本评论探讨了当前的过程和替代解决方案,包括新型的选择性浸出过程或直接回收方法。
锂离子电池 (LIB) 是当今许多高性能应用的首选储能设备。最近,人们对全球变暖和气候变化的担忧增加了电动汽车对锂离子电池的需求和要求,因此迫切需要更先进的技术和材料。在正在开发的阳极材料中,硅 (Si) 被认为是下一代锂离子电池最有希望的阳极候选材料,可取代广泛使用的石墨。Si 不能用作锂离子电池的电极,因此通常使用碳来实现硅在锂离子电池中的适用性。通常,这意味着形成 a-Si/碳复合材料 (Si/C)。高性能锂离子电池工业开发的主要挑战之一是开发低成本、环保、可持续和可再生的化学品和材料。在这方面,假设锂离子电池阳极的性能不受影响,生物基硅和碳有利于应对挑战。本综述论文重点介绍了来自各种生物源(特别是来自植物源生物质资源)的硅和碳阳极的开发。重点介绍了生物质前体、生产硅和碳的工艺/提取方法、影响 LIB 中锂存储的关键物理化学特性以及它们如何影响电化学性能。综述论文还讨论了生物质衍生材料在开发先进电池材料方面面临的当前研究挑战和前景。
摘要由于很快就会在土地填充中大量锂离子电池(LIBS),因此它们的回收对于减少潜在的环境问题并涵盖锂升高的需求至关重要。因此,回收液体已成为一个热门的研究主题。尽管我们对回收自由液化的理解中的基本发展已经达到了一定程度的理解,但在某种程度上,完全优化的流量图设计仍然是制造工厂的内部知识。预处理(物理分离),作为第一步,毫无疑问会影响用过的LIB的整个回收过程的性能。然而,令人惊讶的是,根据已发表的报告,针对用于回收的用户的物理分离过程的每个步骤的调查都没有提供任何细节。为了解决这些问题,这项工作分析了安全回收LIB所涉及的所有可能的预处理过程。对这些调查的详细评估表明,几个关键点没有通过原始和审查的回收LIB的研究来考虑或报告。过程优化,各种预处理步骤的冶金响应,不同预处理方法的粒度限制,磁性,特异性重力以及阴极和阳极材料的表面特性以及其他几个基本变量未通过各种研究来考虑或报告。解决这些差距将为回收Libs流量的设计和操作铺平道路。
2 Xi'an Jiotong University的仪器分析中心,Xi'an Jiotong University,Xi'an 710049,中国 *通信:li@xjtu.edu.edu.cn(l.l.) 收到:2023年4月4日;接受:2023年6月17日;在线发布:2023年8月30日; https://doi.org/10.59717/j.xinn-mater.2023.100030©2023作者。 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。 引用:Shi X.,Zhang H.,Zhang Y.等,(2023)。 锂离子电池中铝电流收集器的腐蚀和保护。 创新材料1(2),100030。 铝(Al)电流收集器,这是锂离子电池(LIBS)的重要组成部分,在影响Libs的电化学性能中起着至关重要的作用。 在LIB的工作和日历老化中,Al都遭受了严重的腐蚀问题,导致电化学性能的衰减。 然而,与LIBS中的阳极和阴极材料,电解质甚至分离器相比,很少有努力对AL的研究进行。 在这里,审查了最近的AL腐蚀和保护方面的研究进展。 我们首先简要概述了Al腐蚀机制及其影响因素。 然后,用于评估Al的电化学,形态和化学特性的高级技术总结,以发现LIBS中的Al腐蚀机制。 接下来,我们会回顾AL,电解质和抑制剂的Al protect策略,具有功能机理,材料选择及其结构设计。 最后,我们在腐蚀和保护方面展现了未来的研究方向。2 Xi'an Jiotong University的仪器分析中心,Xi'an Jiotong University,Xi'an 710049,中国 *通信:li@xjtu.edu.edu.cn(l.l.)收到:2023年4月4日;接受:2023年6月17日;在线发布:2023年8月30日; https://doi.org/10.59717/j.xinn-mater.2023.100030©2023作者。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。引用:Shi X.,Zhang H.,Zhang Y.等,(2023)。锂离子电池中铝电流收集器的腐蚀和保护。创新材料1(2),100030。铝(Al)电流收集器,这是锂离子电池(LIBS)的重要组成部分,在影响Libs的电化学性能中起着至关重要的作用。在LIB的工作和日历老化中,Al都遭受了严重的腐蚀问题,导致电化学性能的衰减。然而,与LIBS中的阳极和阴极材料,电解质甚至分离器相比,很少有努力对AL的研究进行。在这里,审查了最近的AL腐蚀和保护方面的研究进展。我们首先简要概述了Al腐蚀机制及其影响因素。然后,用于评估Al的电化学,形态和化学特性的高级技术总结,以发现LIBS中的Al腐蚀机制。接下来,我们会回顾AL,电解质和抑制剂的Al protect策略,具有功能机理,材料选择及其结构设计。最后,我们在腐蚀和保护方面展现了未来的研究方向。本综述为理解Al抗腐蚀的影响和发展提供了实验和理论支持,这将对包括腐蚀,先进材料和储能设备在内的研究社区有益。
摘要:锂离子电池(LIB)技术支持的电源被认为是最适合公共和军事用途的电源。电池质量始终是一个关键问题,因为电动发动机和便携式设备将功率耗尽算法用于安全性。对于在公共应用中实际使用LIB,低热量产生和快速充电是必不可少的要求,但是到目前为止,这些功能仍然不令人满意。尤其是,在快速充电条件下,慢速LI +插入动力学,锂镀层和自热生成常规的石墨阳极液体是障碍,这是公众需求对这些电池使用的障碍。使用基于硅的阳极与快速反应动力学和快速LI +扩散有关,具有在不久的将来呈现适合公共使用的LIB的巨大潜力。从这个角度来看,强调了开发基于硅的阳极材料来实现具有快速充电能力的LIB的挑战。
摘要:电池是用于固定离网,便携式电子设备和插件电动汽车应用的可持续能源过渡的骨干。锂离子电池(LIB)和钠离子电池(NIB),最常见于碳基阳极材料,通常源自不可再生来源,例如化石沉积物。生物质衍生的碳材料经过广泛研究,作为液体和鼻腔的有效且可持续的阳极候选物。这种观点的主要目的是简要介绍生物量残基为LIB的碳阳极制备,并与生物量衍生的碳物理化学结构及其对齐的电化学特性相关。此外,提出了这一有希望的研究领域面临的前景和一些挑战。这篇评论启发了读者有价值的见解,并合理地理解了制备,物理学特性和生物质衍生的碳材料作为Libs and Nibs的阳极候选者所面临的问题和挑战。
激光诱导的分解光谱(LIBS)是一种简单,快速和敏感的分析技术,已在许多科学学科(例如,化学,物理学,地质学,工程,材料科学,聚合物科学,环境科学,环境科学和金属科学)中使用了近两十年。libs在行业中变得非常流行,尤其是由于便携式仪器的可用性和快速分析,在钢,汽车和飞机制造中变得非常受欢迎。由于该技术可以同时分析光和重元素,因此Libs因其食品分析能力而引起了全球关注,以表征食品中存在的微量营养素,基本成分和有毒物质。没有其他技术在短时间内提供此类综合分析数据,而无需进行任何实质性样本处理。本文回顾了LIB近年来在食品分析中的应用,并讨论了其提高食品成分表征的潜力。
摘要:锂离子电池(LIBS)已成为可移植设备和运输设备的首选电池系统,因为它们的特定能量很高,良好的循环效果,低自我放电以及缺乏记忆效应。但是,过度低的环境温度会严重影响LIB的性能,在-40〜-60°C下几乎无法排放。有许多因素影响Libs的低温性能,最重要的是电极材料之一。因此,迫切需要开发电极材料或修改现有材料以获得出色的低温LIB性能。基于碳的阳极是在LIBS中使用的候选者。近年来,已经发现,石墨阳极中锂离子的扩散系数在低温下更明显地降低,这是限制其低温性能的重要因素。但是,无定形碳材料的结构很复杂。它们具有良好的离子扩散特性,晶粒尺寸,特定的表面积,层间距,结构缺陷,表面官能团和掺杂元件可能会对其低温性能产生更大的影响。在这项工作中,通过从电子调制和结构工程的角度修改基于碳的材料来实现LIB的低温性能。