Knut Jørgen Egelie 挪威科技大学,知识产权中心 (CIP),NTNU TTO AS
摘要:近几十年来,许多不同的政府和非政府组织将测谎用于各种目的,包括确保犯罪供词的真实性。因此,这种诊断是用测谎仪来评估的。然而,测谎仪有局限性,需要更可靠。这项研究介绍了一种使用脑电图 (EEG) 信号检测谎言的新模型。为实现这一目标,我们创建了一个包含 20 名研究参与者的 EEG 数据库。本研究还使用六层图卷积网络和 2 型模糊 (TF-2) 集进行特征选择/提取和自动分类。分类结果表明,所提出的深度模型可以有效区分真话和谎言。因此,即使在嘈杂的环境中 (SNR = 0 dB),分类准确率仍保持在 90% 以上。所提出的策略优于当前的研究和算法。其卓越的性能使其适用于广泛的实际应用。
目标:非综合性口面裂(OFCS)病因涉及多个遗传和环境因素,具有超过60个识别的风险基因座;但是,他们仅占估计风险的少数。表观遗传因子(例如差异DNA甲基化(DNAM))也与OFCS风险有关,并且可以改变不同裂缝类型的风险并改变OFCS渗透率。dnam是将甲基(CH3)组的共价添加到核苷酸胞嘧啶中,可能导致靶基因表达变化。DNAM可能会受到环境影响和通过甲基化定量基因座(MEQTL)的影响。我们假设异常DNAN和基因表达的改变在OFC的病因中起着关键作用,并且某些影响OFCS风险的常见遗传变异是通过影响DNAM的。方法:我们使用了来自10个裂口相关的SNP和全基因组DNA甲基化数据(Illumina 450K阵列)的基因型,用于409例OFC和456个对照,并鉴定出23个与裂口相关的MEQTL。然后,我们使用362 cleft-不一致的SIB对的独立队列进行复制。我们使用甲基化特异性QPCR来测量每个CpG位点的甲基化水平,并结合基因型和甲基化数据,用于使用线性模型中的R package Matrixeqtl进行每个SNP-CPG对的相互作用分析。我们还进行了一个配对的t检验,以分析兄弟姐妹对的每个成员之间的DNA甲基化差异。配对t检验显示CG06873343(TTYH3)(p = 0.04)的显着差异; CG17103269(LPIN3)(P = 0.002)和CG19191560(LGR4)(p = 0.05)。结果:我们复制了9个MEQTL,显示了RS13041247(MAFB)-CG18347630(PLCG1)(P = 0.04)之间的相互作用; RS227731(NOG)-CG08592707(PPM1E)(p = 0.01); RS227731(NOG)-CG10303698(CUEDC1)(p = 0.001); RS3758249(FOXE1)-CG20308679(FRZB)(p = 0.04); RS8001641(SPRY2)-CG19191560(LGR4)(p = 0.04); RS987525(8Q24)-CG16561172(MYC)(P = 0.00000963); RS7590268(THADA)-CG06873343(TTYH3)(p = 0.04); RS7078160(VAX1)-CG09487139(p = 0.05); RS560426(ABCA4/ARHGAP29)-CG25196715(ABCA4/ARHGAP29)(p = 0,03)。结论:我们的结果证实了以前的证据,即通过GWAS研究检测到的某些常见的非编码变体可以通过表观遗传机制(例如DNAM)影响OFC的风险,例如DNAM最终会影响和调节基因表达。鉴于在大多数OFC基因组广泛的关联研究中,非编码SNP的流行率很高,我们的发现可能会解决主要的知识差距,例如缺少遗传力,降低的渗透率和与OFCS表型相关的可变表达性。
收件人:相关方 发件人:国家经济顾问莱尔·布雷纳德 主题:2023 年的美国经济:盘点进展和未来工作 日期:2023 年 12 月 12 日 随着 2023 年接近尾声,现在是盘点所取得的进展和未来工作的好时机。 在过去的一年里,经济增长强劲,而通货膨胀率下降了三分之二,失业率保持在 4% 以下,这是 50 年来最长的一段时间。供应链已经重建,生产率上升。美国工人今年的状况比疫情前更强劲——工资和财富的增长超过了通货膨胀率,就业率强劲,这在一定程度上要归功于总统的拜登经济学议程。但许多美国人仍面临挑战,还有更多工作要做,以降低美国家庭的成本,这是总统的首要经济优先事项。 与许多预测相反,随着供应链的改善,通货膨胀率下降了三分之二,而失业率仍然很低。 实际数据与预测相比如何?一年前,市场普遍预期通胀将下降至目前的水平,但代价是失业率大幅上升和经济增长放缓。拜登总统并不认为有必要做出这样的牺牲。
1波茨坦气候影响研究研究所,德国波茨坦莱布尼兹协会成员2芝加哥大学地球物理科学系,美国伊利诺伊州芝加哥大学,芝加哥,伊利诺伊州芝加哥3号,芝加哥大学,芝加哥大学,芝加哥大学,美国伊利诺伊州芝加哥大学,美国伊利诺伊州芝加哥大学4 nasa natesution for New n n ansa nesty Climimation for New York clinimiment for New York climimitiate for New York Climimation for New n. New newy n. New naty New newy,哥伦比亚大学地球研究所,美国纽约6大都会办公室哈德利中心,英国埃克塞特市7生态系统服务与管理计划,国际应用系统分析研究所,奥地利兰克森堡,奥地利8unitédeModélisationdu climat et des Cycles cyclesbiogéogimiques,ur spheres,ur spheres,ur ur spheres,ur ur stitut d'Astrophysique et de degephysique et degephysique et deguim et dedegéephysique,lie lie lie,lie,lie,li liew,lied,lie,lie,li fim。路德维希 - 马克西米尔人 - 苏尼申(LMU)(LMU),德国慕尼黑地理系10号,马里兰大学,马里兰州大学公园,马里兰州大学公园,美国水资源与土木工程学院,地理科学系,中国北欧农业大学11学院,中国北欧农业大学,地理科学,地理科学,地理科学,卢德大学。英国伯明翰伯明翰市14伯明翰森林研究所,伯明翰大学,伯明翰,英国伯明翰15全球系统研究所,埃克塞特大学,埃克塞特大学,英国埃克塞特大学
近年来,随着常规的石油和天然气资源的耗竭(通常由砂岩,页岩,碳酸盐,碳酸盐,火山岩,火山岩,煤炭,气体水合等代表),非常规的石油和天然气勘探和开发已成为新的热火,成为了新的热率(Yin等,2019a; Yin等,2019b; Yin。 Al。,2022a,2022b;非常规石油和天然气储层的孔隙率较低,渗透率较低,异质性和复杂成岩作用。因此,在不同尺度上的孔和断裂的定量表征已成为高耐高率储层发现的重点和挑战。不同尺寸的毛孔和骨折不仅会影响非常规石油和天然气储层的存储和迁移能力,而且还会对安全钻探和石油和天然气开发计划产生重要影响(Li等,2019; Yin等,2020a; 2020a; Yin et al。,2020b; 2020b; li等,2020; yin and wu,2020; lie,2020; lie and 2020; lie and lie,2020年;本研究主题中的23项研究旨在将不同规模的毛孔和裂缝的定量表征和工程应用汇总到非常规储层中的毛孔和断裂,旨在理解紧密储藏孔和骨折系统的多种方法定量表征的一般目标,并为未来的研究工作提供了一般框架。孔结构的细胞和定量表征的发展是实现紧密储层的有效发展的有效度量(Liu等,2020; Xu and Gao,2020; Xu等,2020)。该主题涵盖了
Li'o yntob irmidlaf ynb samkhla aamtjlaa and h .ienmakh ,narhatl yntob ةraiz nm oobsa lbq tirtha knock fdhab issor lie ةinarie tairsm flaw ةيناكمإ rashtsem laq thih ,inarkoa brh in ahmad 11 1 1 1 1 1 1 1 1 3 3 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 INKM ATKAM ATQO TIRTHA Dqo Ant 被忽视的火 nm 覆盖 isor n,Zomt/Wilui 信仰 Lmh Lādāqla »Tairslma Taim«。 Inarkoa Dd ةirks'ala Tamjhla in Ahmadkhtsa Ahtqtla Ros Lie Navilus Cage Rashao TyrSlma Rahzt ,Dyalma Win Ramwi'a Fi'la Az'a Az'a Siorla Dfola Ahdqft Yetla ةInarela Tairslma Klatmab Rmtslma Isor Mamtha .»tamjhla nash lya ةrdaqla »tamullam« ,ntanshao ydl kldz 叔叔,fadao ةisorla tauqla birdtl d'atst nariI na rahzt。忏悔 Yermidlaf Dohj Na Lie Adideht« Laksht Narkola Barhla 泵在火中。adkhtsla ةinariI tairsmp tailaola Hthart ءadlaa aze nɛ lqo,inarkoa ضارغأو ةيسايس Fadha Uncle Ishamt« ةدحتلما .»頁面
1植物病理学部门,植物保护局,Ecole Agriculture Meknes,KM10,RTE HAJ KADDOUR,BP S/40,MEKNES 50001,摩洛哥; il.dehbi@edu.umi.ac.ma(I.D。); oachemrk@enameknes.ac.ma(O.A.); ezzouggarirachid@gmail.com(R.E.); ikramlegr@gmail.com(i.l.); laaslisalaheddine@gmail.com(S.-E.L.)2植物生物技术与分子生物学实验室,科学系,穆莱·伊斯梅尔大学,BP 11201,Zitoune,Meknes 50000,摩洛哥; h.mazouz@fs-umi.ac.ma 3生物技术,自然资源保护和价值实验室(LBCVNR),科学学院Dhar El Mehraz,Sidi Mohamed Mohamed Ben Abdallah University,FEZ 30000,FEZ 30000,摩洛哥4号,环境科学和管理部,Spheres Research,Spherers Research,Spheron lie lie li li li lie fe。 meljarroudi@uliege.be 5生物技术部门,区域农业研究中心,Inra – Morocco,Rabat 10080,摩洛哥; fmokrini.inra@gmail.com 6植物保护实验室,梅克尼斯地区农业研究中心,国家农业研究所,公里,公里13,路线,哈吉·卡德杜(Haj Kaddour),bp 578,meknes 50001,摩洛哥; zineb.belabess@inra.ma *通信:rlahlali@enameknes.ac.ma
科学研究人员Sta ias -ias -tu Darmstadt,Darmstadt(德国)。责任:研究和发表机器人学习,教学,指导学士学位和硕士学生的科学论文。项目:共享欧盟项目,图像引导针插入(Hessian.ai)的智能辅助。特定的成就:选定的R:SS Pioneer,乔治·吉罗(George Girault)博士学位的精选主义者。奖项,最佳研讨会论文,出版了顶级机器人会议论文(ICRA,IROS,IJRR,RA-L,R:SS),GitHub Open存储库(graspdi Qusion/stable vector in Lie groups on Lie groups)
丘脑核复合物包含兴奋性投影神经元和抑制性局部神经元,这两种细胞类型驱动感觉核中的主要电路。兴奋性神经元源于居住在发展中心的丘脑增殖区的祖细胞,但抑制性局部神经元出生于丘脑以外,它们在发育过程中迁移到那里。除了占据大部分丘脑的这些细胞类型外,还有两个小的丘脑区域,抑制性神经元靶向丘脑外区域,而不是相邻的神经元,而不是邻近的神经元,则构成了lie lie lie fl et eT和副核核。像兴奋性丘脑神经元一样,这些抑制性神经元来自居住在发育中的丘脑中的祖细胞。这些电路的组装遵循精细调整的遗传程序,并由外部因素协调,这些因素可以帮助细胞发现其位置,与丘脑伴侣相关,并与相应的丘脑外部输入和输出建立联系。在这篇综述中,我们将目前有关丘脑皮质感觉系统兴奋性和抑制性成分的发展的知识,特别是小鼠中的视觉途径和丘脑中间神经元。