抽象背景:在全身麻醉下用不锈钢冠(SSC)恢复原代磨牙后,咬合高度调节的不确定性。方法:这项研究的目的是利用三维有限元分析(3D-FEA)来评估摄入咬合高度对牙周韧带(PDL)的影响。锥形束计算机断层扫描(CBCT)图像。构建了三维(3D)模型,随后分组如下:A组,SSC(对照组)未恢复的落叶磨牙。B1组,使用SSC恢复到正常闭塞的落叶磨牙。B2组,使用SSC恢复到正常闭塞的第一个落叶磨牙。B3,第二个落叶磨牙使用SSC恢复到正常的闭塞。 C1组利用SSC将第一和第二个落叶磨牙恢复到1 mm的咬合增加。 C2组应用SSC将第一个落叶磨牙恢复至1 mm的咬合增加。 C3组利用SSC将第二个落叶磨牙恢复到1 mm的咬合增加。 D1组采用SSC将落叶磨牙恢复到2 mm的咬合增加。 D2组(第一个落叶磨牙)用SSC恢复至2 mm的咬合增加。 组D3,第二摩尔还用SSC恢复,以实现2 mm的咬合增加。 使用3D-FEA分别以0、45和90度的角度分别施加到0、45和90度的角度,以评估对PDL的生物力学效应。B3,第二个落叶磨牙使用SSC恢复到正常的闭塞。C1组利用SSC将第一和第二个落叶磨牙恢复到1 mm的咬合增加。C2组应用SSC将第一个落叶磨牙恢复至1 mm的咬合增加。C3组利用SSC将第二个落叶磨牙恢复到1 mm的咬合增加。D1组采用SSC将落叶磨牙恢复到2 mm的咬合增加。D2组(第一个落叶磨牙)用SSC恢复至2 mm的咬合增加。组D3,第二摩尔还用SSC恢复,以实现2 mm的咬合增加。使用3D-FEA分别以0、45和90度的角度分别施加到0、45和90度的角度,以评估对PDL的生物力学效应。结果:在B1组和A组之间观察到PDL内最大von-Mises应力的统计学显着差异(P <0.01)。在SSC恢复后的咬合高度与PDL中的最大VON-MISS应力之间观察到正相关(P <0.01)。PDL中的最大von- mises应力与SSC修复的咬合高度呈正相关,与负载角度和年龄的负相关(P <0.01)。结论:建议将用SSC恢复的摩尔齿的咬合高度保持在2 mm的范围内。
本综述提供了对肌腱和韧带损伤的全面分析,强调了肌腱衍生的干细胞(TDSC)在组织工程中的关键作用,这是针对这些挑战性医疗状况的潜在解决方案。肌腱和韧带损伤,在运动员,老年人和劳动者中普遍存在,由于这些血管结构的内在愈合能力差而导致长期残疾和生活质量降低。生物力学下疤痕组织的形成和高射击率强调了对增强和指导再生过程的创新方法的必要性。本综述深入研究了肌腱和韧带结构和功能的复杂性,伤害的类型及其影响以及自然修复过程的局限性。特别关注TDSC在组织工程背景下的作用。TDSC,其能力分化为tenocyttes,包括用于细胞跟踪的生物相容性支架,共同培养系统,以优化肌腱骨愈合和移植愈合技术。审查还解决了移植后免疫反应性的挑战,预处理的TDSC的重要性以及水凝胶和脱细胞矩阵在支撑肌腱再生中的潜力。通过强调机械和分子刺激在TDSC分化以及当前领域的挑战中的基本作用,为未来的研究方向铺平了道路。
治愈这些伤害所需的康复,它们通常会导致巨大的经济损失和消耗损失。保守的肌腱病和脱瘤的治疗包括长时间的休息时间(6至12个月),逐渐增加了受控的弯曲;其他疗法包括NSAID,水骨 - APY,体外冲击波疗法(ESWT)和激光疗法。生物学疗法,例如中氏茎或基质细胞(MSC)和富含血小板的血浆(PRP),在治疗马匹肌肉骨骼疾病方面已获得了很大的普及。3这些疗法已被假设以促进疾病改良作用,包括增加修复的强度,并有可能降低重枪率。4,5实验和临床研究4-7均表明PRP和MSC具有效率 - 可用于治疗肌腱病和Desmopthy。但是,研究受到小样本量和随访期的变化的限制,
最近,为了提高肌腱愈合的质量,进行了更多的研究(8)。对原生物学的兴趣特别高,大量研究研究了MSC(1、9、10),富含血小板的血浆(PRP)(11-13)(11-13)和自体蛋白溶液(APS)(14)在肌腱模型中的影响。各种MSC的收获来源一直是几篇论文的重点,骨髓衍生的MSC(BM-MSC)最常报道(15-18)。这项当前的研究描述了使用源自外周血的马同种异体延原子引发MSC(TPMSC)。使用TPMSC作为同种异体“现成”产品的好处是消除了与自体MSC的收获,隔离和培养相关的等待时间。此外,使用同种异体供体可以进行细致的选择过程,以确保其MSC始终如一的高质量。几项研究发现,MSC的增长能力和效力与年龄和健康状况下降成反比(19-21)。此外,已经证明活跃工作中的老化马更容易容易肌腱变性(22,23),表明需要使用年轻,健康的马作为捐助者。使用外周血作为MSC源具有几个优点,即从颈静脉静脉易于且低侵入性的收集,细胞的低免疫原性,如先前由主要组织相容性复合物(MHC)I型I和II和II和II型的低表达所示。这与脂肪组织和骨髓衍生的MSC中描述的更异性表达相反(25-27)。
牙周炎是一种主要特征的,其特征是炎症和细菌和内毒素的相互作用,影响牙周的软组织和硬组织。该疾病导致了显着的细胞损伤和组织损失,最终导致骨质流失(Hajishengallis,2022; Zenobia and Darveau,2022; Vitkov等,2023)。硬组织损失的程度决定了治疗策略;然而,机械清创术仍然是牙周处理的基石,该牙周处理将牙周炎症状态转化为解决状态(Albeshri和Greenstein,2022; Laleman等,2022)。牙周治疗不仅涉及从患病的牙齿支撑组织中消除炎症和细菌成分,而且还包括在可及的病例中的再生牙周结构的再生,这些病例可作为组织工程原理的基础,这些原理使适当细胞的应用,生长因子和cackaffolds and cackaffolds tavavelli tavelli et al。(2022),Yi等。(2022),Sopi等。(2023)。牙科干细胞由于其独特的干性,迁移,分化和免疫调节特性而被视为再生的潜在药物(Nagata等,2022; Sun等,2023)。气孔知请干细胞被放置在不同的壁ni中,可以根据口服复合物中的位置进一步将其分为牙齿和牙周干细胞(Ponnaiyan等,2022;Alarcón-Apablaza等,2023)。最近,研究表明,牙周韧带干细胞本质上是间质且位于牙周韧带内的,提供了实质性的
目的目前,CT 被认为是诊断后纵韧带骨化 (OPLL) 的金标准。本研究的目的是开发人工智能 (AI) 软件和一个经过验证的模型,用于在 MRI 上识别和表示颈椎 OPLL (C-OPLL),从而无需进行脊柱 CT 检查。方法对一家三级转诊医院在 36 个月内(2017 年 1 月至 2020 年 7 月之间)因任何临床指征而接受颈部 CT 和 MRI 检查的所有成年患者的连续影像学研究进行回顾性评估。C-OPLL 由一组神经外科医生和一名神经放射科医生确定。然后使用 MATLAB 软件创建一个用于诊断 C-OPLL 的 AI 工具,该方法使用卷积神经网络方法识别 MR 图像上的特征。进行了一项读者研究,以使用标准测试性能指标将 AI 模型的性能与诊断面板的性能进行比较。使用 Cohen 的 kappa 评分评估观察者之间的差异。结果 900 名连续患者被发现有资格接受放射学评估,其中 65 名被确诊为 C-OPLL 携带者。利用 MRI 图像的 AI 模型能够准确分割椎体、PLL 和椎间盘复合体,并检测出 C-OPLL 携带者。AI 模型又识别出了 5 名最初未被发现的 C-OPLL 患者。基于 MRI 的 AI 模型的性能为敏感性为 85%、特异性为 98%、阴性预测值为 98% 和阳性预测值为 85%。该模型的总体准确率为 98%,kappa 得分为 0.917。结论 本研究开发的新型 AI 软件对于在 MRI 上识别 C-OPLL 具有高度特异性,无需使用 CT。该模型可以避免进行 CT 扫描,同时保持足够的诊断准确性。随着进一步发展,这种基于 MRI 的 AI 模型有可能辅助诊断各种脊柱疾病,并且其自动化层可能为 C-OPLL 的 MRI 特定诊断标准奠定基础。
摘要本指南的制定是为了为前交叉韧带重建(ACLR)提供临床实践的依据,并根据研究与评估II(同意II)仪器的评估并使用建议,评估,开发和评估(评估和评估(等级)方法的评估。一个指南开发小组系统地搜索和审查了使用随机临床试验和系统评价的证据,以评估康复干预措施的有效性,并指导临床医生和患者对ACLR后最佳康复方案的含义进行指导。ACLR康复期间的指南针对患者,并研究了对物理治疗师的可用干预措施的有效性,单独或合并(例如,运动,模态,客观进步标准)。运动干预措施应被视为ACLR康复的中流。然而,几乎没有证据表明运动和/或锻炼强度和结果强度之间的剂量反应关系。在康复的早期阶段,当疼痛,肿胀和运动范围内的局限性时,物理治疗方式可以作为辅助手段。在早期增加方式可以允许早期无痛的运动康复开始。返回跑步并返回培训/活动是ACLR后康复的关键里程碑。但是,没有证据表明应使用哪种进展或出院标准。本指南还强调了以前未报告的ACLR管理的几个新元素。虽然大多数康复组成部分的确定性非常低,但本指南中提供的大多数建议是由专家临床医生同意的。