摘要 - 深处增强学习(RL)已经获得了自动在现代芯片设计中生成位置的人口。但是,这些RL模型产生的平面图的视觉样式与手动布局的样式大不相同,因为RL垫片通常只采用诸如Wirelength和Routing Expestion之类的指标作为增强学习的奖励,而忽略了人类专家的复杂且细腻的布局经验。在本文中,我们提出了一个安置得分手,以评估布局的质量,并将异常检测应用于地板计划。此外,我们将该得分手的输出添加为加强安置过程的奖励的一部分。ISPD 2005基准的实验结果表明,我们提出的放置质量得分手可以根据人类工艺风格有效地评估布局,并且将此得分手添加到增强式学习奖励中,有助于与以前的电路设计相比,用更短的线长度生成较短的线长度。索引术语 - 地板,加固倾斜,异常检测,放置得分手
在竞争激烈的商业环境中,战略构思不当、安全措施薄弱或资源不足的活动都可能导致财务和声誉受损。在国家安全背景下,结果可能是——而且已经是——灾难性的,包括生命损失、不可预见的后果和声誉受损。然而,根据 Micah Zenko 的说法,在大多数情况下,通过使用 3 种核心实践可以提高获得更有利结果的机会:模拟、漏洞探测和替代分析。那些意识到自己批改作业所固有的危险的人可以招募一支由熟练的主持人组成的“红队”,他们使用这些实践来鼓励批判性思维、群体思维缓解、文化同理心和自我意识,以加深对组织或参与者的动机、意图和能力的理解。
栽培大豆 ( Glycine max (L.) Merrill ) 是由野生大豆 ( Glycine soja ) 驯化而来,其种子比野生大豆更重,含油量更高。在本研究中,我们利用全基因组关联研究 (GWAS) 鉴定了一个与 SW 相关的新型候选基因。连续三年通过 GWAS 分析检测到候选基因 GmWRI14-like。通过构建过表达 GmWRI14-like 基因的转基因大豆和 gmwri14-like 大豆突变体,我们发现 GmWRI14-like 的过表达增加了 SW 和增加了总脂肪酸含量。然后我们利用 RNA-seq 和 qRT-PCR 鉴定了 GmWRI14-like 直接或间接调控的靶基因。过表达GmWRI14-like的转基因大豆比非转基因大豆株系表现出GmCYP78A50和GmCYP78A69的积累增加。有趣的是,我们还利用酵母双杂交和双分子荧光互补技术发现GmWRI14-like蛋白可以与GmCYP78A69/GmCYP78A50相互作用。我们的研究结果不仅揭示了栽培大豆SW的遗传结构,而且为改良大豆SW和含油量奠定了理论基础。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
结肠癌是美国癌症的主要原因之一。结肠癌是由结肠癌细胞基因组中的许多基因突变发展而来的。长的非编码RNA(LNCRNA)会导致许多癌症(包括结肠癌)的发育和进展。lncRNA已经并且可以通过簇状的定期间隔短的短质体重复序列(CRISPR)相关的核酸酶9(CRISPR/CAS9)系统的聚类重复序列的基因编辑技术来纠正,以减少结肠癌细胞的增殖。但是,许多用于运输基于CRISPR/CAS9的疗法的当前输送系统需要更多的安全性和效率。基于CRISPR/CAS9的治疗药需要安全有效的递送系统,以更直接,更明确地靶向结肠中存在的癌细胞。本综述将提供有关使用植物衍生的外泌体样纳米颗粒作为纳米载体的效率和安全性的相关证据,以提供基于CRISPR/CAS9的疗法以直接靶向结肠癌细胞。
由于所有这些因素,以及人类倾向于以笼统的范畴术语思考,关于 AGI 时间线的争论通常以充满希望、沮丧、欣喜若狂和不屑一顾的人们之间的对决、正交的范畴声明的形式出现。有些人推断某些领域最近的快速发展,并认为变革性的 AGI 即将到来,甚至到了忽视储蓄和生育等面向未来的活动的地步,或者提倡使用暴力来抑制即将到来的 AGI 发展。与此同时,其他人则对最近的成就不屑一顾,并坚持认为 AGI 是一个遥远而可疑的原因,甚至是哲学上的不可能。其他人则懒洋洋地完全避开预测和分析。而这些人除了意见不一之外,基本上甚至不知道如何互相交谈。
1 印度韦洛尔基督教医学院干细胞研究中心(班加罗尔 inStem 的一个单位);2 印度特里凡得琅 Sree Chitra Tirunal 医学科学与技术研究所;3 美国伯克利加州大学伯克利分校创新基因组学研究所;4 美国旧金山格拉德斯通研究所数据科学与生物技术研究所;5 澳大利亚悉尼新南威尔士大学生物技术与生物分子科学学院;6 印度卡纳塔克邦马尼帕尔高等教育学院;7 印度韦洛尔基督教医学院暨医院血液学系;8 日本茨城县理化学研究所生物资源中心细胞工程部;9 日本红十字会中央血液研究所血液服务总部研究与开发部,日本东京;10 印度韦洛尔基督教医学院生物化学系; 11 加州大学洛杉矶分校微生物学、免疫学和分子遗传学系,美国洛杉矶;12 瑞士苏黎世生物系分子健康科学研究所
免疫系统识别病原体和抗原水平的入侵微生物。Toll样受体(TLR)在针对病原体的第一线防御中起关键作用。TLR的主要功能包括细胞因子和趋化因子的产生。TLR与其他受体共享常见的下游信号通路。围绕TLR旋转的串扰相当复杂而复杂,强调了免疫系统的复杂性。通过TLRS产生的细胞因子和趋化因子的蛋白鱼可能会受其他受体的影响。整合素是在许多不同细胞上表达的关键异二聚体粘附分子。有一些研究描述了TLR和整联蛋白之间的协同或抑制性相互作用。因此,我们回顾了TLR和整合素之间的串扰。了解串扰的性质可以使我们能够通过整合素来调节TLR功能。