1 机械与制造工程学院,国立科技大学(NUST),伊斯兰堡 45200,巴基斯坦;sanwer.bmes19smme@student.nust.edu.pk(SA);asim.waris@smme.nust.edu.pk(AW);omer@smme.nust.edu.pk(SOG);j.iqbal@ceme.nust.edu.pk(JI)2 奥克兰理工大学健康与环境科学学院,健康与康复研究所,奥克兰 0627,新西兰;nusrat.shaikh@aut.ac.nz 3 物理、工程与计算机科学学院,赫特福德大学,哈特菲尔德 AL10 9AB,英国; amit.pujari@ieee.org 4 阿伯丁大学工程学院,阿伯丁 AB24 3FX,英国 5 新西兰脊骨医学院脊骨疗法研究中心,奥克兰 1060,新西兰 6 奥尔堡大学健康科学与技术系感觉运动互动中心,9000 奥尔堡,丹麦 * 通讯地址:imran.niazi@nzchiro.co.nz
截肢后,初级体感皮层 (S1) 中代表缺失手的区域失去了其主要输入,导致 S1 身体图的边界发生变化。这种重新映射过程被称为“重组”,并归因于多种机制,包括先前被屏蔽的输入的表达增加。在适应不良的可塑性模型中,这种重组与幻肢痛 (PLP) 有关。与幻肢运动相关的大脑活动也与 PLP 相关,这表明保留的肢体功能表征可能起到补充作用。在这里,我们根据人类神经成像,回顾了一些关于截肢后大脑 (重新) 组织的潜在驱动因素和后果的最新证据。我们强调了与截肢相关的其他感知和行为因素,例如无痛幻肢感觉、感知到的肢体所有权、完整的手补偿行为或假肢使用,这些因素也与皮质变化和 PLP 有关。我们还讨论了基于旨在改变幻肢大脑表征的干预措施的新发现,包括增强/虚拟现实应用和脑机接口。这些研究指出,感觉变化与涉及身体表征、疼痛处理和运动控制的大脑区域的变化密切相关。最后,我们回顾了基于方法学进展的最新证据,例如高场神经成像和多变量技术,这些技术为探究缺失手部皮质区域中的体感表征提供了新的机会。总的来说,这项研究强调了需要考虑除 S1 重新映射之外的其他大脑机制的潜在贡献,以及情境因素与大脑变化的动态相互作用,以理解和缓解 PLP。
社会AI采用率的速度部分是由于培训基于AI的模型的计算能力的增加而驱动的,该模型每年都在攀升四倍,以及AI Architectures的新发展。ai能够创建原始内容(例如这些模型)被称为“生成AI”,并且可以从最小输入数据5,6中输出文本,图像,视频和音频。生成的AI已经在多个行业中迅速吸收了包括报告写作的金融领域以及在线聊天机器人服务7的零售业中,这在其在市场内的增长范围内反映在2032年到2032年的价值超过1万亿美元。因此,医疗保健也是LLMS 8,9的拟议目标毫不奇怪。本综述阐明了医疗保健中LLM的前瞻性用途和好处,重点是上肢手术,描述了设想的临床翻译挑战以及未来的研究目标。
CRISPR-Cas 是一种在细菌中普遍存在的适应性免疫机制。大约三十年前,它在大肠杆菌中被发现,随后在其他细菌和古细菌中也发现了它。CRISPR 代表成簇的规律间隔的短回文重复序列。它作为非同源间隔区之间的重复单元整合到细菌的 DNA 中,保护宿主免受外来元素的攻击。当受到外来遗传元素的攻击时,CRISPR-Cas 免疫系统被激活,其中 Cas 蛋白充当剪刀,将外来 DNA 切成较短的片段,然后作为间隔区整合到宿主 DNA 中。在细菌的防御系统中,当 Cas 蛋白与两种不同的 RNA 分子 CRISPR RNA (crRNA) 结合时,CRISPR-Cas 就会起作用,crRNA 会引导 Cas 酶到达 DNA 并切割 DNA,而反式激活 CRISPR RNA (tracr RNA) 会与 Cas 本身结合。此过程可确保识别外来基因的进一步攻击并保护宿主 [26][16]。CRISPR-Cas 系统是目前最可靠且应用最广泛的基因组编辑和工程机制。Cas 酶的变体 Cas9 是
摘要:在超过三分之一的正面碰撞事故中,前排乘客的下肢受伤。一项研究旨在确定各种类型的伤害、车内伤害的来源以及伤害机制。这些信息有助于指导未来的监管工作,旨在减少这些伤害的频率和严重程度,并就如何在未来的车辆设计中减轻这些伤害提出建议。对在正面碰撞中受伤的乘用车住院或死亡的车内乘客进行了详细检查。研究结果表明,骨折发生在 SS% 的事故中,其中有人遭受下肢伤害。踝关节和足部骨折比其他下肢骨折更常见,并且地板和脚趾区域尤其容易发生这些骨折。受伤的乘员没有明显的年龄或性别影响。与受约束的乘员相比,未受约束的乘员似乎更容易因与仪表板接触而遭受大腿骨折。骨折数量与撞击速度成正比,大约一半的骨折发生在 delta-\' 值为 48km/h 或更低时。最常见的损伤机制是大腿受压(辅助负荷)、膝盖垂直负荷以及脚部挤压或扭曲。需要制定额外的法规来减少这些伤害的频率和严重程度,并且有多种应对措施可供选择。
摘要:上肢(UE)的减少是中风后最常见,最禁用的临床后果之一。头部安装的显示器(HMD)是可穿戴的虚拟现实设备,似乎可以通过提高该人群的依从性水平来促进功能能力的恢复。此范围审查旨在收集有关使用基于HMD的沉浸式虚拟现实系统用于中风幸存者中UE康复治疗的可用证据。从成立到2023年1月18日就咨询了四个电子书目数据库。包括19项HMD用作增加UE功能的临床工具,作为单个干预措施或其他康复治疗的辅助手段;无限制用于ue轻瘫的严重程度或中风发作。绝大多数临床试验涉及慢性中风患者(19分中的15例),其范围很大。总体而言,HMD的使用似乎具有良好的耐受性和有望,可在成人慢性中风幸存者中提高UE运动功能,并且对受试者的手臂使用和独立性有益。执行高度现实和以任务为导向的运动的可能性似乎在增强手势相关性方面有希望,从而以“虚拟生态方式”来促进新的运动策略。在整个研究中,我们发现协议设计的异质性很高,并且缺乏报告,这使我们对患者潜在的亚组得出结论,这些结论可能会从基于HMD的干预措施或建议的治疗方式中更受益。
摘要:对负担得起的假体的需求,尤其是在低收入和中等收入国家(LMIC)的需求很大。当前,大多数假肢插座是使用单岩性热塑性聚合物(例如PP(聚丙烯))制造的,这些聚合物缺乏耐用性,强度和表现出蠕变。另外,它们会用消费热固性树脂和昂贵的复合填充剂(例如碳,玻璃或凯夫拉尔纤维)加固。但是,amputees在获得负担得起的假肢插座方面所面临的未满足需求,要求解决方案。这项研究利用自我增强的PET(Tereylyene Terephenate)(一种负担得起且可持续的复合材料)生产定制的插座。使用可重复使用的真空袋和专用的固化烤箱,推进了独特的插座制造技术的开发,我们测试了制造的插座以获得最大的强度。随后,为其在行动过程中的性能创建和评估了假肢设备。插座的宠物材料的机械和结构强度达到了132 MPa和5686 N的最大强度。发现表明该材料有可能用作制造功能插座的可行替代品。此外,考虑了诸如材料成本,插座重量和强度之类的决策标准,进行了TOPSIS分析以比较插座的性能指数。结果表明,宠物插座在负担能力,耐用性和强度方面优于其他材料。该方法在不到两个小时的时间内成功制造了复杂形的患者插座。此外,步行测试表明,截肢者可以在没有中断的情况下进行日常活动。这项研究在实现负担得起的LMIC的假体方面取得了重大进展,旨在提供针对LMIC量身定制的特定于患者的负担得起的假体。
2.在每一起案件中,法院的主要关注点是评估刑事诉讼的整体公正性。必须根据诉讼整体的发展情况来审查每一起案件是否符合公正审判的要求,而不能仅基于对某一特定方面或某一特定事件的孤立考虑。但是,不能排除某一特定因素可能具有决定性,使得能够在诉讼的早期阶段评估审判的公正性(同上,§ 250)。因此,例如,在评估确认起诉书的预审法官程序时,法院强调,在确定申请人的权利是否受到损害时,必须考虑整个诉讼程序,根据后续审判评估预审法官对案件的处理。作为该决定的一部分,需要评估在审前法官审理期间采取的任何措施是否削弱了申请人的地位,以至于诉讼的所有后续阶段都是不公平的(Alexandru-Radu Luca v. 罗马尼亚,* § 63)。
在过去的几年中,使用机器人外骨骼的人工智能(AI)将人工智能(AI)纳入患有较低LIMB损害的人的康复中的新颖工具和方法的努力都引起了人们的兴趣。潜在的好处包括通过利用AI进行机器人控制和数据分析,促进个性化反馈和指导来实施个性化康复疗法的能力。尽管如此,目前缺乏文献综述,专门针对下肢康复机器人技术中的AI应用。为了解决这一差距,我们的工作旨在对37个同行评审的论文进行评论。本评论根据机器人应用程序方案或AI方法对选定的论文进行了分类。此外,它通过提供输入功能,AI模型性能,注册人群,用于验证过程中使用的外骨骼系统以及每篇论文的特定任务的详细摘要来唯一做出贡献。创新的方面在于对不同算法对特定任务的适用性提供清晰的了解,以指导未来的发展并支持下LIMB外骨骼和AI应用程序领域的知情决策。