1 1化学与系统生物学系,斯坦福大学,斯坦福大学,加利福尼亚州94305 2 2 2 2瑞典索尔纳学院,瑞典6遗传学系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94305 7欧洲同步辐射设施,法国格勒诺布尔,法国8号电气工程系,ESAT/PSI,KU LEUVEN,LEUVEN,BILGIUM 9 MITHER IMAGING RESIGION CENTRAL,UZ LEUVIUM,BELGIUM 10 MATICIT IMATIC CENTRAL,BELGIUM NUUN GENIC,HUMUN GUINIC,HUMUN GUINEC,比利时11英国剑桥大学生物化学系12 Applied肿瘤基因组学计划,赫尔辛基大学,赫尔辛基,芬兰,1化学与系统生物学系,斯坦福大学,斯坦福大学,加利福尼亚州94305 2 2 2 2瑞典索尔纳学院,瑞典6遗传学系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94305 7欧洲同步辐射设施,法国格勒诺布尔,法国8号电气工程系,ESAT/PSI,KU LEUVEN,LEUVEN,BILGIUM 9 MITHER IMAGING RESIGION CENTRAL,UZ LEUVIUM,BELGIUM 10 MATICIT IMATIC CENTRAL,BELGIUM NUUN GENIC,HUMUN GUINIC,HUMUN GUINEC,比利时11英国剑桥大学生物化学系12 Applied肿瘤基因组学计划,赫尔辛基大学,赫尔辛基,芬兰,
在矫形器件中,机电一货量的整合已扩大了其在神经和肌肉骨骼疾病治疗中的应用。但是,现有devices通常面临大小,成本和体重的问题。为了解决这个问题,一个项目旨在开发一种利用物联网技术的便携式,轻巧且具有成本效益的康复系统。这款可穿戴设备由PIC微控制器提供动力,监视和控制下肢和脚趾运动。ACCELEREMETOR和EMG传感器增强了功能性,从而实现了精确的运动监测和肌肉活动检测。随着物联网集成,用户ConremotelyPerform量身定制的练习,以恢复受损的腿,并用现代技术弥合传统方法。该设备的轻巧,便携性和负担能力旨在扩大可及性,可能改变物理疗法和康复实践。
冠状病毒病 (COVID-19) 疫情需要迅速重塑康复服务,以涵盖患有重症监护后综合症的严重 COVID-19 患者(重症监护后综合症导致身体机能减退和认知障碍)、患有合并症的患者以及疫情期间需要物理治疗但无法或只能有限地进入医院和康复中心的其他患者。考虑到社交距离和居家令对优质康复环境和服务的获取障碍,这些患者可以通过家庭康复获得负担得起的优质护理。这种治疗的成功将在很大程度上取决于治疗的强度和患者投入的努力。监测患者的依从性和设计一个可以让他们精神上参与的家庭康复是家庭治疗成功的关键因素。因此,我们研究了最先进的远程康复框架和机器人设备,并评论了一种混合模型,该模型可以使用现有的远程康复框架和家庭机器人设备进行治疗,同时远程评估患者的进展。其次,我们评论了患者的社会支持和参与,这对远程康复服务的成功至关重要。由于治疗师无法亲自到场指导患者,我们还讨论了家庭远程康复的适应性要求。最后,我们建议改革后的康复服务应同时考虑家庭解决方案以增强日常生活活动能力,以及按需移动康复单元以进行广泛训练,以便我们可以远程监控患者的认知和运动表现。
上下文:所有脊髓损伤的一半以上(SCI)发生在宫颈水平,导致上肢功能丧失,活动受限和独立性降低。已经开发了几种技术来协助SCI人群的上肢功能。目的:关于当前辅助技术对宫颈SCI人群的有效性尚无明确的临床共识,因此本研究回顾了1999年至2019年之间的文献。方法:对最先进的辅助技术进行了系统的审查,该技术支持并改善了宫颈SCI种群中上肢受损的功能。术语组合,涵盖辅助技术,SCI和上肢,总共有1770篇文章。对选定的研究进行了数据提取,其中涉及总结有关辅助技术,研究参与者的特征,结果指标的细节以及使用该设备时改进的上肢功能。结果:总共发现了24篇文章,并将其分为五个类别,包括神经假体(侵入性和非侵入性),矫形器件,混合系统,机器人和手臂支撑。只有少数选定的研究全面报告了参与者的特征。有各种各样的结果指标,所有研究都报告了设备上肢功能的改善。结论:这项研究强调,辅助技术可以改善SCI患者上肢的功能。由于因素,例如招募参与者的异质性,广泛的结果指标和所采用的不同技术,因此得出可普遍的结论是一项挑战。
摘要:目的。控制假肢的主要挑战是设备与使用者幻肢之间的通信。我们展示了通过有针对性的经皮神经电刺激 (tTENS) 增强截肢者幻肢感知和改善运动解码的能力。方法。对四名截肢参与者进行了经皮神经刺激实验,以绘制幻肢感知。我们在截肢者接受感官刺激之前和之后测量了幻肢运动过程中的肌电信号。使用脑电图 (EEG) 监测,我们测量了幻肢运动和刺激过程中感觉运动区域的神经活动。对于一名参与者,我们还跟踪了 2 年内的感官映射和 1 年内的运动解码表现。主要结果。结果显示,由于感官刺激,截肢者感知和移动幻肢手的能力有所提高,从而改善了运动解码。在对一名截肢者进行的扩展研究中,我们发现感觉映射在 2 年内保持稳定。值得注意的是,感觉刺激可改善 28 天内的运动解码,而表现在 1 年内保持稳定。从脑电图中,我们观察到感觉运动整合的皮质相关性和由于幻肢感知增强而增加的运动相关神经活动。31 意义。这项研究表明,幻肢感知会影响假肢控制,并且可以从有针对性的神经刺激中受益。这些发现对于改善假肢的可用性和功能具有重要意义,因为幻肢的感觉增强了。34
长期固定对运动系统的影响已被描述为在运动准备、想象或执行期间,当必须进行运动时。但是,当必须抑制运动时会发生什么?长期肢体固定会调节运动抑制背后的生理反应吗?在健康参与者执行 Go/Nogo 任务时记录了事件相关电位 (ERP),双手可以自由反应(T1/T4:固定前/后)或左手运动被石膏固定阻止时(T2:石膏固定后立即;T3:固定一周后)。在右侧(对照)侧,无论时间点如何,N140、N2 和 P3 成分在 Nogo 试验中显示出比在 Go 试验中更大的预期振幅。相反,在左侧(操纵侧),对 Nogo 试验的 ERP 反应的每个组成部分在不同时间点都表现出特定的差异,这表明抑制相关的 EEG 活动由于石膏的存在和固定时间的延长而显著降低。此外,在固定后阻断阶段(T3 阻断),对 Nogo 刺激的抑制相关 θ 波段活动降低。总之,这些发现可以解释为固定引起的可塑性变化的结果,石膏相关的皮质脊髓兴奋性调节(通过使用 TMS 研究)和对 Go 和 Nogo 试验的 β 波段降低也证明了这一点。因此,只有我们可以自由活动,抑制反应才会完全实现。固定一周后,阻断运动所需的抑制量较低,因此抑制相关反应也会降低。
指导用户进行肢体运动可以帮助肌肉训练或身体恢复。但是,传统的基于视觉的方法通常需要多个摄像头,以帮助用户了解动作,并要求它们在屏幕范围内。因此,我们提出了一个非视觉系统,可以使用空间音频,AudioMove,带有商业式货架(COTS)设备(即智能手机和耳机)的多个方向肢体动作来指导用户。所提出的系统解决了实时传达包含多个平面的定向信息的挑战。我们进行了一项混合方法用户研究,以通过将运动数据与空间音频感知相结合的三种方法来评估系统的有效性。此外,构建了用户界面以收集用户的注释。结果得出的结论是,空间音频指导可以在日常生活中创建自然,普遍和非视觉运动训练解决方案。
了解大脑编码上肢运动如何对于辅助技术中的控制机制至关重要。辅助技术,尤其是脑机界面(BMI)的进步突出了解码运动意图和运动学对有效控制的重要性。基于EEG的BMI系统由于其非侵入性和诱导神经可塑性的潜力而增强运动康复结果的潜力而显示出希望。基于EEG的BMI显示了解码运动意图和运动学的潜力,但研究表明与实际或计划的运动的相关性不一致,对实现精确和可靠的假体控制提出了挑战。此外,个体的预测性脑电图模式的变异性需要个性化调整以提高BMI效率。整合多个生理信号可以提高BMI的精度和可靠性,为更有效的运动康复策略铺平道路。研究表明,大脑活动在运动过程中适应引力和惯性约束,突出了神经适应生物力学变化在创建辅助设备控制系统中的关键作用。本综述旨在全面概述与生理和辅助上肢运动相关的解密神经活动模式的最新进展,从而强调了在神经疗程和脑镜界面发展中未来探索的途径。
当手臂或腿部的一部分被手术切除(肢体截肢)时,肢体末端的神经会被切断。这通常会导致两种类型的持续性肢体疼痛:残肢疼痛通常由形成疼痛性良性肿瘤的神经末梢引起,或肢体被切除部分产生的幻肢痛。这些疼痛很难通过标准止痛方法治疗,有时即使接受治疗也不会消失。有针对性的肌肉神经再支配包括重新布置被切断的神经,将它们连接到附近肌肉中的其他神经(神经再支配)。该手术的目的是控制肢体截肢后的疼痛。
摘要 — 用户-假肢接口 (UPI) 的复杂性,用于控制和选择主动上肢假肢的不同抓握模式和手势,以及使用肌电图 (EMG) 所带来的问题,以及长时间的训练和适应,都会影响截肢者停止使用该设备。此外,开发成本和具有挑战性的研究使得最终产品对于绝大多数桡骨截肢者来说过于昂贵,并且经常为截肢者提供无法满足其需求的界面。通常,EMG 控制的多抓握假肢将一组肌肉的特定收缩的具有挑战性的检测映射到一种抓握类型,将可能的抓握次数限制为可区分的肌肉收缩次数。为了降低成本并以定制方式促进用户和系统之间的交互,我们提出了一种基于图像和 EMG 对象分类的混合 UPI,与 3D 打印上肢假肢集成,由 Android 开发的智能手机应用程序控制。这种方法可以轻松更新系统,并降低用户所需的认知努力,从而满足功能性和低成本之间的权衡。因此,用户可以通过拍摄要交互的物体的照片来实现无数预定义的抓握类型、手势和动作序列,只需使用四种肌肉收缩来验证和启动建议的交互类型。实验结果表明,假肢在与日常生活物体交互时具有出色的机械性能,控制器和分类器具有很高的准确性和响应能力。