1 Centre for Quantum Information & Communication (QuIC), École polytechnique de Bruxelles, Universit´e libre de Bruxelles, Brussels, B-1050, Belgium 2 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain 3理论物理与天体物理学研究所,国家量子信息中心,数学,物理学和信息学系,GDASK SK,Wita Stwosza 57,80-308 GDA SK,波兰4 4 4国际量子技术中心(ICTQT)国际量子学院(ICTQT)量子信息中心,数学学院,物理和信息学,GDA SK大学,Wita Stwosza 57,80-308 GDA,波兰SK
文章信息摘要牛顿第二运动定律 F = ma 一直被认为是经典力学的基石,为理解宏观物体的行为提供了基本框架。然而,随着物理学深入到量子领域,牛顿第二定律的适用性变得有限,量子力学原理成为粒子行为的主要描述。本文首先概述了牛顿对经典力学的历史发展以及 20 世纪初量子力学的出现,然后深入探讨了框架的基本原理。将粒子作为具有确定性轨迹的点质量的经典描述与波函数和叠加原理描述的量子粒子的概率性质进行了对比。本文还讨论了这些理论的实际应用和含义,阐明了它们在各个科学学科中的意义。本研究论文对牛顿第二运动定律和量子物理进行了比较分析,从经典力学和量子力学的角度研究了它们的基本原理和含义。本文首先概述了牛顿第二定律及其在经典力学中的意义,然后深入探讨了量子力学的基本假设及其与经典概念的偏离。本文探讨了牛顿第二定律应用于量子现象时的固有局限性,并将其原理与量子物理学的原理进行了比较和对比。通过对证据和理论框架的全面分析,本文阐明了经典力学的界限,并强调了量子力学在原子和亚原子层面描述现象的必要性。通过探索关键的差异和相似之处,本文旨在深入了解宏观和微观尺度上粒子的行为。关键词:牛顿体、量子力学、牛顿第二定律、粒子
预测性和产生的人工智能(AI)都通过在做出高度影响力的决策中的使用而成为我们生活中不可或缺的一部分。AI系统已经被广泛部署,例如在就业,医疗保健,保险,财务,教育,公共管理和刑事司法方面。这些系统的偏见和歧视,隐私的侵入性,不透明和环境成本等严重的道德问题是众所周知的。生成的AI(GAI)会产生幻觉和不准确或有害信息,从而导致科学知识的错误信息,虚假信息和侵蚀。《人工情报法》(AIA),产品责任指令以及人工智能责任指令指令反映了欧洲遏制其中一些问题的尝试。随着这些政策的法律范围
开放式船舶交通的解化绝绝对只能通过替代能源载体实现。除了合成燃料之外,电池电力推进是一种备受关注的措施,尤其是对于较小的船只和短通道。但是,对定量船舶特性尚无共识,可以应用电池而不是基于燃料的解决方案。因此,评估了45个具有一系列运输能力的容器的电池推进系统的局限性。最常见的海洋电池技术通过将其性能与最先进的燃烧引擎进行比较,从经济和环境中评估。监控船舶的质量和数量限制,除了资本和运营费用外,还量化了新兴的机会成本。发现电池电气推进系统的应用不受容器尺寸的限制,而是主要受操作的通道长度的限制。尽管在技术上最多可实现15,000公里的距离,但经济上的局限性实际上将应用领域降低到最多10,000公里。但是,当将电池解决方案与常规柴油燃烧发动机进行比较时,只有在包括碳税和预测乐观的电池开发时,才能观察到高达2500公里的经济竞争力。
摘要:基于可再生能源的可靠电网系统是限制气候危机的关键一步。固定式电池储能系统 (BESS) 具有巨大的潜力,可以在不同时间范围内抵消电网中的功率波动。但是,为了可靠地运行和估算成本,需要了解电池的退化情况。我们对 NCM532/Gr 锂离子电池单元的单服务应用和多服务应用进行了加速电池退化研究。频率调节 (FR) 对电池的危害最小,预期寿命为 12 年,而峰值调节 (PS) 的预期寿命为 8 年。联合循环 (FRPS) 加速了容量损失,并且从循环开始就会引起正极的退化,导致仅在 870 个等效全循环 (EFC) 后功率受限。跟踪 1C 速率放电容量被证明是加速电池极化的良好指标,并且可以作为评估内部电池健康状态 (SOH) 的有用方法。
2019 年,由于大量且无限制地使用化石燃料来满足社会约 80% 的能源需求(目前约为 585 艾焦耳 (EJ)/年),全球二氧化碳 (CO 2 ) 的年度排放量达到 34.2 千兆吨 (Gt)。1、2 为客运和货运提供出行服务的交通运输约占二氧化碳总排放量的 25%。3、4 考虑到目前的人口增长率和相关的能源消耗增长,预计到 2050 年,全球能源需求将增加至少 50%。1、2、5 为了满足这些需求,同时通过减少人为二氧化碳排放将环境影响降至最低,大规模部署低碳可再生能源 (RE) 是必要的。 6 − 8 尽管可再生能源在当前能源格局中的总体份额略有增加,但最近的研究确实表明,在未来 30 年左右,通过具有成本效益的全球热力和运输部门深度电气化的愿景,可以实现向 100% 可再生能源的全面过渡。 9 − 11 因此,这种能源转型不再是技术可行性或经济可行性的问题,而是政治意愿的问题。 12
纳米技术通过控制纳米级级别的材料来刺激医疗和医疗保健疗法和疗法的巨大创新。它处理的是纳米化实体的制备通常从1到100 nm,与散装材料相比,它们具有独特的物理化学特性,可以在多种生物医学应用中实施。因此,纳米技术正在引起人们对实现个性化医学的限制以克服当前疗法的局限性的关注。的确,尽管药物输送仍然是医学科学的不断进步,但仍然代表着至关重要的挑战[1]。通过非病毒纳米传输器(NVS)递送药物,具有几种优势,例如可以自定义药物释放,溶解度,半衰期,生物利用度和免疫原性的可能性。已证明使用纳米载体,例如脂质体,胶束和纳米颗粒[2,3]可以提高药物的溶解度,并防止血液循环过程中酶,pH和其他因素降解(表1)。此外,NVS的可调节尺寸,形状和结构使它们能够达到相关的药物载荷能力。此外,它们的大小与人类细胞细胞器相当,它们可以与各种配体相互作用,包括亲水性和疏水性,靶细胞和细胞内室。毫无疑问,将治疗剂直接递送到目标是一个挑战,这对于增加其效率的同时减少副作用很重要[4,5]。调用化学治疗药具有多种常见的局限性,例如:(i)由于其疏水性而导致水中的低溶解度,(ii)缺乏癌细胞的选择性以及(iii)产生多药耐药性的潜力;例如,某些药物可以增加心肌梗塞,心脏病发作,中风和血块的风险[6]。
财务披露:Sartor 博士是 Advanced Accelerator Applications (AAA)、安进、安斯泰来、阿斯利康、拜耳、Blue Earth Diagnostics, Inc.、Bavarian Nordic、百时美施贵宝、Clarity Pharmaceuticals、Clovis、Constellation、Curium、Dendreon、EMD Serono、Fusion、Isotopen Technologien Meun- chen、杨森、强生、Myovant、Myriad、Noria Therapeutics, Inc.、诺华、Noxopharm、Nucligen、Progenics、POINT Biopharma、辉瑞、赛诺菲、Tenebio、Telix 和 Theragnostics 的顾问/顾问;对 Clarity、Lantheus、Noria、Ratio、Nucligen 和 Telix 拥有投资权益;并且是 Advanced Accelerator Applications、安进、阿斯利康、拜耳、Constellation、Endocyte、Invitae、杨森、Lantheus、默克、POINT、Biopharma、Progenics 和 Tenebio 的研究员。Herrmann 博士是 AAA、阿斯利康、拜耳医疗、强生、诺华、Curium 和安进的顾问;从拜耳、So fi e Biosciences、SIRTEX、Adacap、Curium、Endocyte、BTG、IPSEN、西门子医疗、通用电气医疗、安进、诺华、ymabs、Aktis Oncology、Theragnostics、Pharma15、Debiopharm、阿斯利康和杨森获得个人费用;从 BTG 获得资助;从 ABX 获得非财政支持;并从 So fi e Biosciences 获得其他支持。本文作者未指出任何其他可被视为真实或明显利益冲突的相关关系。
1 Centre for Quantum Information & Communication (QuIC), École polytechnique de Bruxelles, Universit´e libre de Bruxelles, Brussels, B-1050, Belgium 2 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain 3理论物理与天体物理学研究所,国家量子信息中心,数学,物理学和信息学系,GDASK SK,Wita Stwosza 57,80-308 GDA SK,波兰4 4 4国际量子技术中心(ICTQT)国际量子学院(ICTQT)量子信息中心,数学学院,物理和信息学,GDA SK大学,Wita Stwosza 57,80-308 GDA,波兰SK
最近一系列利用原核生物的适应性免疫系统进行靶向基因组编辑的发现正在对整个生物科学产生变革性影响。成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白的发现扩大了全球数千个实验室的遗传研究应用,并重新定义了我们的基因治疗方法。传统基因治疗引起了一些担忧,因为它依赖于病毒载体传递治疗性转基因,这会导致插入致癌和免疫原性毒性。虽然病毒载体仍然是主要的传递载体,但 CRISPR 技术为位点特异性基因编辑提供了一种相对简单有效的替代方法,消除了传统基因治疗引起的一些担忧。尽管 CRISPR/Cas9 具有明显的优势,但它也带来了一系列局限性,必须解决这些局限性才能实现安全有效的临床转化。本综述重点介绍基因治疗的发展以及 CRISPR 在转变基因治疗模式中的作用。我们回顾了最近基因治疗试验的新数据,并考虑了推进这项强大但仍然相对较新的技术的最佳策略。
