“通过我们的研究,我们了解到父母饮酒会导致后代的线粒体问题,” VMBS兽医生理学和药理学系教授Golding说。“如果您将线粒体视为电池,父母饮酒会导致'电池'的电压异常低。由于线粒体无法正常工作,因此会引起炎症,并且炎症过多会使您容易受到癌症的发展。”
“在国家危机时期进行这项复杂的临床研究,当我们的医院系统受到严重压力时这些发现现在可能会改变我们如何理解和治疗病毒后神经系统状况的景观。它还证实了长卷的神经系统症状是可以测量大脑的真实和可证明的代谢和血管变化的。”
这项研究确定了融合在线粒体DNA(mtDNA)修复中融合中的生理作用,并突出了其与FUS相关神经退行性疾病的发病机理(如杏仁型侧面硬化症(ALS))的影响。内源性FUS与MTDNA连接酶IIIα(MTLIG3)相互作用并募集到线粒体内的DNA损伤位点,这对于维持健康细胞中MTDNA修复和完整性至关重要。使用ALS患者衍生的FUS突变细胞系,转基因小鼠模型和人尸检样品,我们发现FUS功能损害阻碍了MTLIG3的维修作用,从而导致mtDNA损伤和突变增加。这些改变会导致线粒体功能障碍的各种表现,特别是在与疾病病理学有关的压力状况下。重要的是,在患者衍生的诱导多能细胞(IPSC)中纠正FUS突变可保留mtDNA完整性。类似地,引入人DNA连接酶1的焦油恢复了FUS突变细胞中的修复机制和线粒体活性,这表明潜在的治疗方法。我们发现FUS在线粒体健康和mtDNA修复中的关键作用,为线粒体功能障碍在FUS相关运动神经元疾病中的线粒体功能障碍提供了宝贵的见解。
引言尽管技术的步伐似乎每年都会以巨大的飞跃而迅速提前提高,但组织必须谨慎做出反应,在投资之前考虑技术成熟度。如果采用技术过早,它可能会导致整体系统稳定性或安全性问题,如果不尽快采用它,组织可能会发现他们自己落后于竞争对手。我们应该关注什么,面对这些挑战,我们应该采取什么行动?这两个问题对于那些设计和计划相互联系的综合系统的人至关重要,并且鉴于现在有多少挖掘技术影响了我们的生活,这对几乎每个人都至关重要。为了解决这个问题,我们采取了Delphi研究的形式,这是一种众所周知的预测技术。我们采访了一系列受人尊敬的未来主义者,以了解他们如何看到新数字技术的不同方面及其与2040年到2040年相互联系的计算的互动。从这些访谈中,我们产生了一系列预测。然后,为了建立更完整的图片,我们回到受访者身上,并要求他们对初始预测的反应和评论。在本文中,我们探讨了五个出现的预测和六项建议干预措施。因此,本文的目的是帮助政策制定者和技术专业人员在这五个预测中使用这些信息来开发和部署新颖的计算机技术进行战略决策。本文的其余部分如下。“背景”部分探讨了未来预测的艺术。“相互联系的研究方法”部分着眼于预测
一种称为Gapmer反义寡核苷酸(ASO)的专门治疗方法旨在专门靶向和分解故障的核糖核酸(RNA),同时保持正常基因功能完整。使用这种RNA疗法导致在KCNA2基因中编码的有问题的钾通道蛋白中显着降低,这有助于恢复正常的钾流量并减少与癫痫有关的过度神经元活性。
冰芯测量结果显示出多种大气中的CO 2变化(减少,减少或保持稳定),呈千禧一代北大西洋寒冷时期,称为Stadials。这些对比趋势的原因仍然难以捉摸。碳富含深海的通风可能会深刻影响大气中的CO 2,但其千禧一代的历史受到限制。在这里,我们提出了过去150,000年的良好高分辨率深度大西洋酸度记录,这显示了迄今为止五种迄今未发现的体型海洋通风模式,对深海碳存储和相关大气CO 2变化产生了不同的后果。我们的数据提供了观察性证据,以表明在大气CO 2显着上升时,强烈且通常广泛的南部海洋通风释放了大量的深海碳。相比之下,其他体积的特征是通过南大西洋和北大西洋的通风弱,促进了呼吸碳的积累,因此减少或逆转了深海碳损失,导致大气中CO 2的升高甚至下降。我们的发现表明,深海碳储存和大气CO 2的千禧年尺度变化是通过两个极性区域的相互作用的多种海洋通风模式调节的,而不是单独的南方海洋,这对于对过去和未来的碳循环调节对气候变化至关重要。
除了这些危险信号外,DC的许多功能,包括成熟,细胞因子产生和迁移,还受到体内电信号的调节。DC中钾和钙离子的浓度与其成熟过程密切相关。然而,金属离子进入和流出细胞的运动严格由离子通道控制,目前没有有效的方法激活这些通道。
抽象背景超出观察到的细胞结构和线粒体的改变,将罕见的遗传突变与受脱敏突变影响的患者的心力衰竭发展联系在一起的机制尚不清楚,这是由于缺乏相关的人类心肌细胞模型。阐明线粒体在这些机制中的作用的方法,我们研究了源自人类诱导的多能干细胞的心肌细胞,这些干细胞带有杂合的DES E439K突变,这些干细胞是从患者中分离出来的,或者是由基因编辑产生的。为了提高生理相关性,在各向异性的微图案表面上培养心肌细胞以获得伸长和比对的心肌细胞,或者作为心脏球体,以创建微生物。在适用的情况下,通过突然死于携带DES E439K突变的家族的患者的心脏活检证实了心肌细胞的结果,并从五个对照健康的供体中验尸中的心脏样本。结果杂合DES E439K突变导致心肌细胞的总体细胞结构的巨大变化,包括细胞大小和形态。最重要的是,突变的心肌细胞显示出改变的线粒体结构,线粒体呼吸能力和代谢活性,让人联想到患者心脏组织中观察到的缺陷。最后,为了挑战病理机制,我们将正常的线粒体转移到突变体心肌细胞内,并证明这种治疗方法能够恢复心肌细胞的线粒体和收缩功能。结论这项工作突出了DES E439K突变的有害作用,证明了Mito-软骨异常在与Desmin相关心肌病的病理生理学中的关键作用,并为这种疾病打开了新的潜在治疗观点。
图1。家族性肌原纤维肌病和杂合DES E439K变体。(a)受影响家庭的血统。圈子和正方形分别代表女性和男性受试者。实心符号显示患有肌病和心肌病的患者。交叉的符号代表已故的受试者。+符号代表患者存在致病性杂合DES变体。固体箭头指示其心脏活检的家庭成员用于组织学和生化分析。空箭头指示其外周血单核细胞用于产生IPSC克隆的家庭成员。(b)索引病例CII的心脏样本的双脑室横向心脏切片(A)显示两个心室的扩张。(c)福尔马林固定左心室截面的苏木精蛋白safran染色显示广泛的纤维化。
“在寻求大脑中自闭症谱系障碍行为的根本原因时,我们发现神经递质的早期变化是主要原因的好候选者,”生物学科学学院尼古拉斯·斯皮策(Nicholas Spitzer)说,神经生物学系和大脑和思想研究所的尼古拉斯·斯皮策(Nicholas Spitzer)。“掌握触发ASD的早期事件可能会允许开发新的干预措施,以防止这些行为的出现。”