表1.1:归一化的生命周期性温g排放估计....................................................................................................................................................................................................................................................................................................................................................................................... 10表1.3:计算主要转换器工厂所需的信息。。。。。。。。。。 Fibre Optic Cables material quantities .............................................................. 16 Table 1.6: Construction phase embodied carbon emissions summary .............................. 17 Table 1.7: Operation and maintenance phase embodied carbon emissions summary ...... 18 Table 1.8: Decommissioning phase embodied carbon emissions summary ...................... 19 Table 1.9: Embodied carbon of the cumulative cables (between UK EEZ和
巴黎,2024年4月25日 - EIT Innoergy,这是欧盟欧洲联盟(EU)欧洲创新与技术研究所(EIT)支持的可持续能源创新引擎(EU),该机构(EU)投资了法国DeepTech初创企业Geolinks。 源自在国家de la Recherche Scientifique(CNR)中进行的研究,Geolinks开发了一种专利的地球物理地下监测技术,该技术将应用于能源过渡的关键领域。 通过生成地下土壤的动态图像,Geolinks可以检测和提取锂,镍,钴,锰或石墨等关键电池原材料,有助于识别和监视地下储能设施,例如。 对于CO 2或氢,并防止与地下流体运动相关的风险。 这项投资是由首席投资者EIT InnoEnergy以及其他私人投资者提供的150万欧元的资本注入,以支持加速Geolinks上市时间,推动其国际扩张并通过CA增长其团队的服务。 在接下来的12个月中10名员工。巴黎,2024年4月25日 - EIT Innoergy,这是欧盟欧洲联盟(EU)欧洲创新与技术研究所(EIT)支持的可持续能源创新引擎(EU),该机构(EU)投资了法国DeepTech初创企业Geolinks。源自在国家de la Recherche Scientifique(CNR)中进行的研究,Geolinks开发了一种专利的地球物理地下监测技术,该技术将应用于能源过渡的关键领域。通过生成地下土壤的动态图像,Geolinks可以检测和提取锂,镍,钴,锰或石墨等关键电池原材料,有助于识别和监视地下储能设施,例如。对于CO 2或氢,并防止与地下流体运动相关的风险。 这项投资是由首席投资者EIT InnoEnergy以及其他私人投资者提供的150万欧元的资本注入,以支持加速Geolinks上市时间,推动其国际扩张并通过CA增长其团队的服务。 在接下来的12个月中10名员工。对于CO 2或氢,并防止与地下流体运动相关的风险。这项投资是由首席投资者EIT InnoEnergy以及其他私人投资者提供的150万欧元的资本注入,以支持加速Geolinks上市时间,推动其国际扩张并通过CA增长其团队的服务。在接下来的12个月中10名员工。
早期在线版本:该初步版本已被接受以在天气,气候和社会上出版,可以完全引用,并已分配DOI 10.1175/WCAS-D-23-23-0147.1。最终的排版复制文章将在发布时在上述DOI上替换EOR。
微生物群落都是在所有宜居环境中都发现的,并且经常在随着时间的推移而自组织的空间结构中进行组合。只能通过将实验与数学建模相结合,才能理解,预测和管理。如果个人异质性,局部相互作用和适应性行为引起人们的关注,基于个体的模型特别适合。 在这里,我们介绍了完全过度拖拉的软件平台,这是微生物群落的基于个体的动态,模拟Idynomics 2.0,它使研究人员能够指定一系列不同的模型而无需编程。 关键的新功能和改进是:(1)实质上增强的易用性(图形用户界面,模型规范的编辑器,单位转换,数据分析和可视化等)。 (2)提高性能和可伸缩性,可实现3D生物膜中多达1000万代理的模拟。 (3)动力学可以用任何算术函数指定。 (4)代理属性可以从正交模块中组装出来,以进行挑选和混合灵活性。 (5)基于力的机械互动框架,实现了吸引力和非球员形态,作为推动算法的替代方案。 新的Ildynomics 2.0进行了一次密集测试,从单位测试到一组日益复杂的数值测试以及基于硝基化生物膜的标准基准3。基于个体的模型特别适合。在这里,我们介绍了完全过度拖拉的软件平台,这是微生物群落的基于个体的动态,模拟Idynomics 2.0,它使研究人员能够指定一系列不同的模型而无需编程。关键的新功能和改进是:(1)实质上增强的易用性(图形用户界面,模型规范的编辑器,单位转换,数据分析和可视化等)。(2)提高性能和可伸缩性,可实现3D生物膜中多达1000万代理的模拟。(3)动力学可以用任何算术函数指定。(4)代理属性可以从正交模块中组装出来,以进行挑选和混合灵活性。(5)基于力的机械互动框架,实现了吸引力和非球员形态,作为推动算法的替代方案。新的Ildynomics 2.0进行了一次密集测试,从单位测试到一组日益复杂的数值测试以及基于硝基化生物膜的标准基准3。第二个测试案例是基于在BACSIM中实施的“生物膜促进利他主义”研究,因为由于合作个体之间的积极反馈,竞争结果对发展的空间结构非常敏感。我们通过添加形态来扩展了这一案例研究,以发现(i)丝状细菌构成球形细菌,无论生长策略如何,以及(ii)在竞争竞争的不合作丝中,因为细丝可以逃脱彼此之间更强大的竞争。总而言之,新的改进的Idynomics 2.0加入了越来越多的平台,用于基于微生物社区的基于个人的模型,具有我们讨论的特定优势和缺点,为用户提供了更广泛的选择。
摘要 全球导航卫星系统 (GNSS),例如 GPS 和伽利略,在全球范围内提供精确的时间和空间坐标,是现代社会关键基础设施的一部分。为了可靠地运行 GNSS,需要高度精确和稳定的系统时间,例如由全球精密计时设施 (PTF) 中托管的多个独立时钟提供的时间。定期测量 PTF 之间的相对时钟偏移,以便有一个后备系统来同步 GNSS 卫星时钟。PTF 之间通信的安全性和完整性至关重要:如果受到损害,可能会导致 GNSS 服务中断。因此,确保 PTF 之间的通信安全是通过量子密钥分发 (QKD) 保护的一个引人注目的用例,因为这项技术提供了信息论安全性。我们已经通过在两个 PTF 之间共享加密的时间同步信息对这种用例进行了现场试验演示,一个位于 Oberpfaffenhofen(德国),另一个位于马泰拉(意大利)——相距超过 900 公里。为了跨越这么远的距离,需要卫星 QKD 系统,以及“最后一英里”地面链路,以将光学地面站 (OGS) 连接到 PTF 的实际位置。在我们的演示中,我们部署了两个完整的 QKD 系统来保护两个位置的最后一英里连接,并通过模拟表明,即将发射的 QKD 卫星将能够利用现有的 OGS 在 Oberpfaffenhofen 和 Matera 之间分发密钥。
1。Magliano DJ,Boyko EJ。IDF糖尿病图集第10版科学委员会。 IDF糖尿病图集[Internet]。 第十埃德·布鲁塞尔:国际糖尿病联合会; 2021。 世界卫生组织媒体中心。 糖尿病。 https:// www。 who.int/news-room/fact-sheets/detail/diabetes3。 柳叶刀糖尿病内分泌学。 糖尿病:绘制未来的泰坦尼克号斗争。 柳叶刀糖尿病内分泌。 2018; 6(1):1。 https:// doi.org/10.1016/s2213-8587(17)30414-x 4。 Demir S,Nawroth PP,Herzig S,EkimüstünelB。 2型糖尿病和糖尿病并发症中的新兴靶标。 adv Sci。 2021; 8(18):E2100275。 https://doi.org/10.1002/advs.202100275 5。 Younossi ZM,Henry L.肥胖和2型糖尿病对慢性肝病的影响。 Am J胃肠道。 2019; 114(11):1714–5。 https://doi.org/10.14309/ajg.000000000000000433 6。 Ferguson D,Finck BN。 用于治疗NAFLD和2型糖尿病的新兴治疗方法。 nat Rev endo-Crinol。 2021; 17(8):484–95。 https://doi.org/10.1038/s41574-021- 00507-z 7。 Rinella ME,Lazarus JV,Ratziu V,Francque SM,Sanyal AJ,Kanwal F等。 关于新脂肪肝病术语的多社会Delphi共识声明。 肝病学。 2023; 78(6):1966–86。 epub在印刷前。 https://doi.org/10.1097/hep.0000000000000520 8。 细胞代谢。 2020; 32(4):654–64。IDF糖尿病图集第10版科学委员会。IDF糖尿病图集[Internet]。第十埃德·布鲁塞尔:国际糖尿病联合会; 2021。世界卫生组织媒体中心。糖尿病。https:// www。who.int/news-room/fact-sheets/detail/diabetes3。柳叶刀糖尿病内分泌学。糖尿病:绘制未来的泰坦尼克号斗争。柳叶刀糖尿病内分泌。2018; 6(1):1。 https:// doi.org/10.1016/s2213-8587(17)30414-x 4。 Demir S,Nawroth PP,Herzig S,EkimüstünelB。 2型糖尿病和糖尿病并发症中的新兴靶标。 adv Sci。 2021; 8(18):E2100275。 https://doi.org/10.1002/advs.202100275 5。 Younossi ZM,Henry L.肥胖和2型糖尿病对慢性肝病的影响。 Am J胃肠道。 2019; 114(11):1714–5。 https://doi.org/10.14309/ajg.000000000000000433 6。 Ferguson D,Finck BN。 用于治疗NAFLD和2型糖尿病的新兴治疗方法。 nat Rev endo-Crinol。 2021; 17(8):484–95。 https://doi.org/10.1038/s41574-021- 00507-z 7。 Rinella ME,Lazarus JV,Ratziu V,Francque SM,Sanyal AJ,Kanwal F等。 关于新脂肪肝病术语的多社会Delphi共识声明。 肝病学。 2023; 78(6):1966–86。 epub在印刷前。 https://doi.org/10.1097/hep.0000000000000520 8。 细胞代谢。 2020; 32(4):654–64。2018; 6(1):1。 https:// doi.org/10.1016/s2213-8587(17)30414-x 4。Demir S,Nawroth PP,Herzig S,EkimüstünelB。 2型糖尿病和糖尿病并发症中的新兴靶标。 adv Sci。 2021; 8(18):E2100275。 https://doi.org/10.1002/advs.202100275 5。 Younossi ZM,Henry L.肥胖和2型糖尿病对慢性肝病的影响。 Am J胃肠道。 2019; 114(11):1714–5。 https://doi.org/10.14309/ajg.000000000000000433 6。 Ferguson D,Finck BN。 用于治疗NAFLD和2型糖尿病的新兴治疗方法。 nat Rev endo-Crinol。 2021; 17(8):484–95。 https://doi.org/10.1038/s41574-021- 00507-z 7。 Rinella ME,Lazarus JV,Ratziu V,Francque SM,Sanyal AJ,Kanwal F等。 关于新脂肪肝病术语的多社会Delphi共识声明。 肝病学。 2023; 78(6):1966–86。 epub在印刷前。 https://doi.org/10.1097/hep.0000000000000520 8。 细胞代谢。 2020; 32(4):654–64。Demir S,Nawroth PP,Herzig S,EkimüstünelB。2型糖尿病和糖尿病并发症中的新兴靶标。adv Sci。2021; 8(18):E2100275。https://doi.org/10.1002/advs.202100275 5。 Younossi ZM,Henry L.肥胖和2型糖尿病对慢性肝病的影响。 Am J胃肠道。 2019; 114(11):1714–5。 https://doi.org/10.14309/ajg.000000000000000433 6。 Ferguson D,Finck BN。 用于治疗NAFLD和2型糖尿病的新兴治疗方法。 nat Rev endo-Crinol。 2021; 17(8):484–95。 https://doi.org/10.1038/s41574-021- 00507-z 7。 Rinella ME,Lazarus JV,Ratziu V,Francque SM,Sanyal AJ,Kanwal F等。 关于新脂肪肝病术语的多社会Delphi共识声明。 肝病学。 2023; 78(6):1966–86。 epub在印刷前。 https://doi.org/10.1097/hep.0000000000000520 8。 细胞代谢。 2020; 32(4):654–64。https://doi.org/10.1002/advs.202100275 5。Younossi ZM,Henry L.肥胖和2型糖尿病对慢性肝病的影响。 Am J胃肠道。 2019; 114(11):1714–5。 https://doi.org/10.14309/ajg.000000000000000433 6。 Ferguson D,Finck BN。 用于治疗NAFLD和2型糖尿病的新兴治疗方法。 nat Rev endo-Crinol。 2021; 17(8):484–95。 https://doi.org/10.1038/s41574-021- 00507-z 7。 Rinella ME,Lazarus JV,Ratziu V,Francque SM,Sanyal AJ,Kanwal F等。 关于新脂肪肝病术语的多社会Delphi共识声明。 肝病学。 2023; 78(6):1966–86。 epub在印刷前。 https://doi.org/10.1097/hep.0000000000000520 8。 细胞代谢。 2020; 32(4):654–64。Younossi ZM,Henry L.肥胖和2型糖尿病对慢性肝病的影响。Am J胃肠道。2019; 114(11):1714–5。 https://doi.org/10.14309/ajg.000000000000000433 6。 Ferguson D,Finck BN。 用于治疗NAFLD和2型糖尿病的新兴治疗方法。 nat Rev endo-Crinol。 2021; 17(8):484–95。 https://doi.org/10.1038/s41574-021- 00507-z 7。 Rinella ME,Lazarus JV,Ratziu V,Francque SM,Sanyal AJ,Kanwal F等。 关于新脂肪肝病术语的多社会Delphi共识声明。 肝病学。 2023; 78(6):1966–86。 epub在印刷前。 https://doi.org/10.1097/hep.0000000000000520 8。 细胞代谢。 2020; 32(4):654–64。2019; 114(11):1714–5。https://doi.org/10.14309/ajg.000000000000000433 6。Ferguson D,Finck BN。用于治疗NAFLD和2型糖尿病的新兴治疗方法。nat Rev endo-Crinol。2021; 17(8):484–95。https://doi.org/10.1038/s41574-021- 00507-z 7。Rinella ME,Lazarus JV,Ratziu V,Francque SM,Sanyal AJ,Kanwal F等。关于新脂肪肝病术语的多社会Delphi共识声明。肝病学。2023; 78(6):1966–86。epub在印刷前。https://doi.org/10.1097/hep.0000000000000520 8。 细胞代谢。 2020; 32(4):654–64。https://doi.org/10.1097/hep.0000000000000520 8。细胞代谢。2020; 32(4):654–64。Lyu K,Zhang Y,Zhang D,Kahn M,Ter Horst KW,Rodrigues MR等。 一种膜结合的二酰基甘油物种诱导PKC E介导的肝胰岛素抵抗。 https://doi.org/10.1016/j.cmet.2020.08.001 9。 Loomba R,Friedman SL,Shulman GI。 非酒精性脂肪肝病的机制和疾病序列。 单元格。 2021; 184(10):2537–64。 https://doi.org/10.1016/j.cell.2021.04.015 10。 Petersen MC,Shulman GI。 胰岛素作用和胰岛素抵抗的机制。 Physiol Rev. 2018; 98(4):2133–223。 https://doi.org/10。 1152/physrev.00063.2017 11。 SUNG KC,Jeong WS,Wild SH,Byrne CD。 胰岛素抵抗,超重/肥胖和脂肪肝的结合影响是2型糖尿病的风险。 糖尿病护理。 2012; 35(4):717–22。 https://doi.org/10.2337/dc11-1853 12。 Mantovani A,Petracca G,Beatrice G,Tilg H,Byrne CD,Targher G.非酒精性脂肪肝病和发生糖尿病的风险:501 022名成年人的更新的荟萃分析。 肠道。 2021; 70(5):962–9。 https://doi.org/10.1136/gutjnl-2020-322572 13。 Sanderson E,Glymour MM,Holmes MV,Kang H,Morrison J,MunafòMR等。 孟德尔随机化。 nat Rev方法引物。 2022; 2(1):6。 https://doi.org/10.1038/s43586-021-00092-5 14。 刘Z,Zhang Y,Graham S,Wang X,Cai D,Huang M等。 NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。 J hepatol。 代谢。Lyu K,Zhang Y,Zhang D,Kahn M,Ter Horst KW,Rodrigues MR等。一种膜结合的二酰基甘油物种诱导PKC E介导的肝胰岛素抵抗。https://doi.org/10.1016/j.cmet.2020.08.001 9。Loomba R,Friedman SL,Shulman GI。非酒精性脂肪肝病的机制和疾病序列。单元格。2021; 184(10):2537–64。https://doi.org/10.1016/j.cell.2021.04.015 10。 Petersen MC,Shulman GI。 胰岛素作用和胰岛素抵抗的机制。 Physiol Rev. 2018; 98(4):2133–223。 https://doi.org/10。 1152/physrev.00063.2017 11。 SUNG KC,Jeong WS,Wild SH,Byrne CD。 胰岛素抵抗,超重/肥胖和脂肪肝的结合影响是2型糖尿病的风险。 糖尿病护理。 2012; 35(4):717–22。 https://doi.org/10.2337/dc11-1853 12。 Mantovani A,Petracca G,Beatrice G,Tilg H,Byrne CD,Targher G.非酒精性脂肪肝病和发生糖尿病的风险:501 022名成年人的更新的荟萃分析。 肠道。 2021; 70(5):962–9。 https://doi.org/10.1136/gutjnl-2020-322572 13。 Sanderson E,Glymour MM,Holmes MV,Kang H,Morrison J,MunafòMR等。 孟德尔随机化。 nat Rev方法引物。 2022; 2(1):6。 https://doi.org/10.1038/s43586-021-00092-5 14。 刘Z,Zhang Y,Graham S,Wang X,Cai D,Huang M等。 NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。 J hepatol。 代谢。https://doi.org/10.1016/j.cell.2021.04.015 10。Petersen MC,Shulman GI。胰岛素作用和胰岛素抵抗的机制。 Physiol Rev. 2018; 98(4):2133–223。 https://doi.org/10。 1152/physrev.00063.2017 11。 SUNG KC,Jeong WS,Wild SH,Byrne CD。 胰岛素抵抗,超重/肥胖和脂肪肝的结合影响是2型糖尿病的风险。 糖尿病护理。 2012; 35(4):717–22。 https://doi.org/10.2337/dc11-1853 12。 Mantovani A,Petracca G,Beatrice G,Tilg H,Byrne CD,Targher G.非酒精性脂肪肝病和发生糖尿病的风险:501 022名成年人的更新的荟萃分析。 肠道。 2021; 70(5):962–9。 https://doi.org/10.1136/gutjnl-2020-322572 13。 Sanderson E,Glymour MM,Holmes MV,Kang H,Morrison J,MunafòMR等。 孟德尔随机化。 nat Rev方法引物。 2022; 2(1):6。 https://doi.org/10.1038/s43586-021-00092-5 14。 刘Z,Zhang Y,Graham S,Wang X,Cai D,Huang M等。 NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。 J hepatol。 代谢。胰岛素作用和胰岛素抵抗的机制。Physiol Rev.2018; 98(4):2133–223。 https://doi.org/10。 1152/physrev.00063.2017 11。 SUNG KC,Jeong WS,Wild SH,Byrne CD。 胰岛素抵抗,超重/肥胖和脂肪肝的结合影响是2型糖尿病的风险。 糖尿病护理。 2012; 35(4):717–22。 https://doi.org/10.2337/dc11-1853 12。 Mantovani A,Petracca G,Beatrice G,Tilg H,Byrne CD,Targher G.非酒精性脂肪肝病和发生糖尿病的风险:501 022名成年人的更新的荟萃分析。 肠道。 2021; 70(5):962–9。 https://doi.org/10.1136/gutjnl-2020-322572 13。 Sanderson E,Glymour MM,Holmes MV,Kang H,Morrison J,MunafòMR等。 孟德尔随机化。 nat Rev方法引物。 2022; 2(1):6。 https://doi.org/10.1038/s43586-021-00092-5 14。 刘Z,Zhang Y,Graham S,Wang X,Cai D,Huang M等。 NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。 J hepatol。 代谢。2018; 98(4):2133–223。https://doi.org/10。 1152/physrev.00063.2017 11。 SUNG KC,Jeong WS,Wild SH,Byrne CD。 胰岛素抵抗,超重/肥胖和脂肪肝的结合影响是2型糖尿病的风险。 糖尿病护理。 2012; 35(4):717–22。 https://doi.org/10.2337/dc11-1853 12。 Mantovani A,Petracca G,Beatrice G,Tilg H,Byrne CD,Targher G.非酒精性脂肪肝病和发生糖尿病的风险:501 022名成年人的更新的荟萃分析。 肠道。 2021; 70(5):962–9。 https://doi.org/10.1136/gutjnl-2020-322572 13。 Sanderson E,Glymour MM,Holmes MV,Kang H,Morrison J,MunafòMR等。 孟德尔随机化。 nat Rev方法引物。 2022; 2(1):6。 https://doi.org/10.1038/s43586-021-00092-5 14。 刘Z,Zhang Y,Graham S,Wang X,Cai D,Huang M等。 NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。 J hepatol。 代谢。https://doi.org/10。1152/physrev.00063.2017 11。SUNG KC,Jeong WS,Wild SH,Byrne CD。胰岛素抵抗,超重/肥胖和脂肪肝的结合影响是2型糖尿病的风险。糖尿病护理。2012; 35(4):717–22。https://doi.org/10.2337/dc11-1853 12。Mantovani A,Petracca G,Beatrice G,Tilg H,Byrne CD,Targher G.非酒精性脂肪肝病和发生糖尿病的风险:501 022名成年人的更新的荟萃分析。肠道。2021; 70(5):962–9。https://doi.org/10.1136/gutjnl-2020-322572 13。 Sanderson E,Glymour MM,Holmes MV,Kang H,Morrison J,MunafòMR等。 孟德尔随机化。 nat Rev方法引物。 2022; 2(1):6。 https://doi.org/10.1038/s43586-021-00092-5 14。 刘Z,Zhang Y,Graham S,Wang X,Cai D,Huang M等。 NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。 J hepatol。 代谢。https://doi.org/10.1136/gutjnl-2020-322572 13。Sanderson E,Glymour MM,Holmes MV,Kang H,Morrison J,MunafòMR等。孟德尔随机化。nat Rev方法引物。2022; 2(1):6。 https://doi.org/10.1038/s43586-021-00092-5 14。刘Z,Zhang Y,Graham S,Wang X,Cai D,Huang M等。NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。 J hepatol。 代谢。NAFLD,T2D和肥胖之间的因果关系对疾病亚型型具有影响。J hepatol。代谢。2020; 73(2):263–76。https://doi.org/10.1016/j.jhep.2020.03.006 15。liu Z,Suo C,Fan H,Zhang T,Jin L,Chen X。剖析因慢性升高的丙氨酸跨激酶水平和34种外部疾病而定的非酒精性脂肪肝病之间的因果关系。2022; 135:155270。 https://doi.org/10。1016/j.metabol.2022.155270 16。Younossi ZM,Golabi P,De Avila L,Paik JM,Srishord M,Fukui N等。2型糖尿病患者的NAFLD和NASH的全球流行病学:系统评价和荟萃分析。J hepatol。2019; 71(4):793–801。 https://doi.org/10.1016/j.jhep.2019.06.021 17。 Ajmera V,Cepin S,Tesfai K,Hofflich H,Cadman K,Lopez S等。 一项关于2型患者的NAFLD,晚期纤维化,肝硬化和肝细胞癌患病率的前瞻性研究2019; 71(4):793–801。https://doi.org/10.1016/j.jhep.2019.06.021 17。 Ajmera V,Cepin S,Tesfai K,Hofflich H,Cadman K,Lopez S等。 一项关于2型患者的NAFLD,晚期纤维化,肝硬化和肝细胞癌患病率的前瞻性研究https://doi.org/10.1016/j.jhep.2019.06.021 17。Ajmera V,Cepin S,Tesfai K,Hofflich H,Cadman K,Lopez S等。一项关于2型患者的NAFLD,晚期纤维化,肝硬化和肝细胞癌患病率的前瞻性研究
抽象的早期逆境在全球范围内普遍存在,这代表了整个生命周期中心理健康负担增加的有效风险因素。但是,逆境暴露,神经生物学变化和心理健康问题之间存在实质性的异质性。考虑到逆境的关键特征,例如暴露的发展时机可以阐明逆境,神经发育和心理健康之间的关联。本研究利用稀疏的规范相关性分析来表征逆境年龄暴露年龄与整个大脑中白质区完整性之间的协方差模式。我们发现,在儿童期间(尤其是5-6岁和8-9岁)的逆境暴露与白质道完整性的变化有关,以便支持感觉运动功能的区域在与逆境暴露的关系中表现出更高的完整性,而支持皮质皮层通信表现出较低的完整性。此外,在学龄前年龄和中学期间经历的逆境(4-9岁)与逆境相关的潜在道模式与成年后与创伤相关的症状有关。我们的发现强调了逆境暴露可能会以功能和发展的特定方式差异地影响白质,并表明4-9岁之间经历的逆境可能会以与成人心理健康相关的方式影响全球白质区的发展。
抽象的DNA-蛋白交联(DPC)是最普遍和有害的DNA病变之一,是由于暴露于代谢应激,药物或交联药物(如甲醛(FA))而引起的。fa是甲醇代谢,组蛋白脱甲基化,脂质过氧化和环境污染物的细胞副产品。无法修复FA诱导的DPC几乎所有基于染色质的过程,包括复制和转录,导致免疫缺陷,神经变性和癌症。然而,它在很大程度上仍然未知细胞如何维修DPC。由于缺乏鉴定DPC的技术,我们不理解FA的蛋白质类型会阻碍DPC修复的研究。在这里,我们通过将氯化葡萄球菌差异超速离心与HPLC-MAS-MAS光谱法(MS)耦合,从而设计了一种新型的生物测定法,以介绍FA诱导的DPC。使用该方法,我们揭示了FA诱导的人类细胞中FA诱导的DPC的蛋白质组,发现形成DPC的最丰富的蛋白质是PARP1,拓扑异构酶I和II和II和II,甲基转移酶,DNA和RNA聚合酶,组蛋白,组蛋白,以及核糖体蛋白。为了鉴定修复DPC的酶,我们进行了RNA干扰筛选,发现皮瓣核酸内切酶1(FEN1)的下调使细胞对FA过敏。由于Fen1具有5'-FLAP内切酶活性,因此我们假设FA诱导了DPC偶联的5'-FLAP DNA片段,可以通过Fen1处理。的确,我们证明了FA会损坏通过碱基切除途径(BER)转化为5'-FLAP的DNA碱基。我们还观察到受损的DNA碱基与DPC和FEN1共定位。从机械上讲,我们显示了FEN1在体内修复FA诱导的DPC和裂解5'-FLAP DNA底物,这些DNA具有模拟于体外的DPC。我们还发现,FEN1修复酶拓扑异构酶II(TOP2)-DPC,由其抑制剂依托泊苷和阿霉素诱导的诱导的酶促蛋白酶和阿霉素独立于BER途径,而FEN1和FEN1和DPC靶向的蛋白酶sprtn是对两种FA诱导的非Zym Zym Zym Zymations sprapterations spr的可行途径top2-dpcs。值得注意的是,我们发现FA诱导的非酶DPC和酶ToP2-DPC迅速通过聚辅助核糖基化(ParyLation)迅速修饰,这是一种由PARP1催化的翻译后修饰,由PARP1催化的,这是一种由Paryling DNA损伤损害蛋白和DNA Reparion Reparte resation and DNA损伤蛋白的关键DNA损伤效应器和DNA Reparte resation and dna Reparte stotes和DNA Reparte stotes。,我们用HPLC-MS的抗PAR抗体进行了免疫沉淀(IP)测定,并将Fen1鉴定为parylation底物。接下来,我们表明DPC底物的填充信号发出了Fen1,而Fen1的抚养也将Fen1驱动到DPC位点。最后,使用末端ADP-ribose-MS方法的酶促标记,我们将FEN1的E285残基确定为主要的荷置位点,这似乎是FEN1迁移到DPCS所需的。综上所述,我们的工作不仅揭示了FA诱导的DPC的身份,而且还发现了前所未有的PARP1-FEN1核酸酶途径,是一种通用和势在必行的机制,可以修复其他DPC并防止DPC诱导的基因组不稳定。
摘要。随着无线技术的快速发展,无人驾驶汽车(UAV)在自由空间光学(FSO)通信中的结合可以从覆盖范围,安全性和容量中获得一些好处。详细研究了用于分析此类系统的参数。由于湍流引起的褪色以及几何和未对准效应而导致接收到的光束中的辐照波动,以最大程度地减少位错误率。UAV雇用的FSO链接中涉及的随机变量大于FSO系统中存在的随机变量。因此,与地面陆地FSO链接相比,无人机的FSO系统的有效设计相对较具挑战。可以定义许多性能指标,并且需要进行分析,以优化与基于无人机的FSO系统相关的参数,并设计具有良好服务质量的链接。还探讨了一些最新方法,以进一步提高基于无人机的FSO网络的可靠性和覆盖范围。
在任职期间,Peroulis 帮助确保了资金,以命名学院、电气工程大楼和新的最先进的合作研究区。校友 William B. Elmore 捐赠 2500 万美元,用于在 2021 年命名 Elmore 家族电气与计算机工程学院,这既是为了满足学院的当前需求,也是为了确保其长期影响。校友 Max W Brown 的捐赠使电气工程大楼被命名为 Max W & Maileen Brown 家族大厅 (BHEE)。命名旨在促进教学创新和研究发展。Chiminski 家族合作研究中心是由校友 John R. Chiminski 和他的妻子 Laura A. Chiminski 捐赠的。该空间位于材料与电气工程大楼 (MSEE) 的二楼,包括高质量、灵活的工作空间,供 ECE 多个学科的研究生共同工作。在 Peroulis 卸任后,设施改进工作仍将继续,因为 BHEE 的翻新工作已在进行中。