背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。
Andrii Shuliak 1 、Andrii Hedzyk 2 、Nina Tverezovska 3 、Lyubov Fenchak 4 、Natalia Lalak 5 、Anatolii Ratsul 6 、Oleksandr Kuchai 7 1 教育学博士,乌克兰帕夫洛·特奇纳乌曼国立师范大学信息学、信息和通信技术系教师 2 乌克兰德拉戈马诺夫国立师范大学研究生(博士) 3 教育学博士,教授,乌克兰国立生命与环境科学大学社会工作与康复系教授 4 教育学候选人,副教授,乌克兰穆卡切沃国立大学 5 教育学候选人,副教授,乌克兰穆卡切沃国立大学 6 教育学博士,教授,沃洛基米尔教育与特殊教育系主任维尼琴科乌克兰中央国立师范大学,乌克兰 7 教育学博士,副教授,乌克兰国立生命与环境科学大学教育学系教授,乌克兰
有机材料(例如树皮和生物炭)可以是治疗雨水的有效过滤材料。但是,这种过滤器在保留微塑料(MPS)(一种新兴的雨水污染物)中的效率尚未得到充分研究。这项研究研究了通常与雨水相关的MP的去除和运输。将不同的MP类型(聚酰胺,聚乙烯,聚丙烯和聚苯乙烯)混合到25、50和100 cm长的水平树皮和生物炭过滤器的最初2 cm材料中。MP类型由25-900μm的球形和碎片形状组成。过滤器的水流为5 mL/min,持续一周,并通过μFTIR成像分析了MPS的总废料。为了获得更深入的见解,将一个100 cm的树皮过滤器副本分为10 cm段,并提取并计数每个段中的MPS。结果表明,在所有生物炭和树皮过滤器中,MP有效保留了> 97%。但是,无论滤波长度如何,在所有废水中都检测到MP。流出浓度分别在树皮和生物炭废水中测量5 - 750 MP/L和35-355 MP/L,> 91%的MP计数由小型(25μm)聚酰胺球形颗粒组成。将所有数据结合起来,使用更长的过滤器发现了平均MP浓度的降低,这可能归因于25和50 cm滤波器中的引导。树皮介质中MPS的ALYSES显示,大多数MP都保留在0-10 cm段中,但有些MPS进一步运输,其中19%的聚酰胺保留在80 - 90 cm段中。总体而言,这项研究表明,树皮和生物炭过滤器保留国会议员的有希望的结果,同时强调了系统堆积过滤器以减少污染雨水对环境的MP排放的重要性。
牙龈卟啉单胞菌(P. gingivalis)是一种革兰氏阴性口腔厌氧菌,在牙周炎的发病过程中起关键作用。P. gingivalis表达多种毒力因子,破坏先天性和适应性免疫,使其在宿主体内存活、繁殖并破坏牙周组织。除了牙周病外,P. gingivalis还与全身性疾病有关,胰岛素抵抗是其中重要的病理基础。P. gingivalis引起全身炎症反应,破坏胰岛素信号通路,诱导胰腺b细胞功能减退和数量减少,导致胰岛素敏感性降低,从而产生胰岛素抵抗(IR)。本文系统综述了P. gingivalis引起胰岛素抵抗的机制研究,讨论了P. gingivalis与基于胰岛素抵抗的全身性疾病的关联,并最终提出了相关的治疗方法。总之,通过系统地综述牙龈卟啉单胞菌通过胰岛素抵抗引起全身性疾病的相关机制,我们希望为未来相关全身性疾病的基础研究和临床干预提供新的见解。
量子计算承诺在许多范围内的指数计算加速度,例如加密,量子模拟和线性代数[1]。即使一台大型,容忍故障的量子计算机仍然有很多年的距离,但在过去的十年中,使用超导电路[2-4]取得了令人印象深刻的进步,导致嘈杂的中间尺度量子(NISQ)ERA [5]。可以预测,NISQ设备应允许“ Quantum-tumpremacy” [6],也就是说,解决了在合理时间内在古典计算机上棘手的问题。最近通过对随机电路的输出分布进行采样[7],这是在53 QUIT的处理器上证明的。最突出的NISQ算法是用于组合优化问题的量子近似优化算法(QAOA)[8-10]和用于计算分子能量的变量量子量化量化算法[11-13]。QAOA是一种启发式算法,可以将多项式速度带到量子中编码的特定问题的解决方案
文本:阿维塞纳,又名伊本西纳,被认为是伊斯兰黄金时代最重要的医生、天文学家、思想家和作家之一,出生于公元 980 年左右,在布哈拉(今乌兹别克斯坦)附近的一个村庄阿夫沙纳。十岁时,他学习并记住了整本《古兰经》。十几岁时,他被亚里士多德的《形而上学》深深困扰,直到他读了法拉比对这部作品的评论后才明白。在接下来的一年半里,他学习了哲学。十六岁时,他转向医学。他不仅学习了医学理论,还发现了新的治疗方法。他很快取得了巨大的进步,成为一名优秀的医生,并开始使用经过批准的疗法治疗患者。他治疗了许多患者,却不收取任何费用。他最著名的作品是《医书》,一部哲学和科学百科全书,以及《医典》,一部医学百科全书,成为许多中世纪大学的标准医学教材,并一直沿用到 1650 年。1973 年,阿维森纳的《医典》在纽约重印。伊本西那于 1037 年 6 月 21 日去世。改编自维基百科,免费百科全书任务一:A/ 我阅读文本,然后完成下表。(02 分)
• 内德·菲尔普斯教导我们,增长和繁荣取决于企业家精神和“长期而普遍的本土创新”——取决于在社会中创造空间“让个人独立思考,寻找冒险,释放他们的想象力并探索未知”(我引用)• 因此,他认为增长和生产力的放缓是社会未能培育创新和个人创造力——这种失败有时可能导致民主危机• 今天,我向你们讲述一个意大利经济的简短故事,它与这种增长观非常吻合
作者 WA Elkhateeb · 2019 · 被引用 14 次 — 真菌 b-葡聚糖通过 dectin-1 在宿主防御信号传导中的免疫调节。Biomol Therapeut 2012;20:433–445。15 Yang Y、Zhao X、Li J、Jiang H、Shan X、Wang ...
