摘要,全球未满足的需要快速且具有成本效益的预后和诊断工具,可以在床边或医生中使用,以减少严重疾病的影响。许多癌症被诊断出来,导致昂贵的治疗和预期寿命降低。患有前列腺癌,缺乏可靠的测试抑制了筛查计划的采用。我们报告了一个微电子的现代代谢物生物标志物测量平台,并将其用于前列腺癌检测。平台使用一系列光电检测器配置以单一整合的被动微型流体通道配置有针对性的,多重的,比色测定法,完成了4个代谢物的组合分析,在2分钟内,人类质量的滴剂中的滴剂量。使用L-氨基酸,谷氨酸,胆碱和肌氨酸的初步临床研究用于训练交叉验证的随机森林算法。该系统表现出对前列腺癌的敏感性,为94%,特异性为70%,曲线下的面积为0.78。该技术可以实施许多类似的测定面板,因此有可能彻底改变低成本,快速,护理点测试。
原文发表时未注明资金来源:本研究由泉州市科技重大专项(批准号:2022GZ8)、闽南理工大学技术创新项目(批准号:23XTD113)、产学研合作资助。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Nahyun Shin、Moonsu Kim、Jaeyun Ha、Yong-Tae Kim、Jinsub Choi。柔性阳极 SnO2 纳米多孔结构均匀涂覆聚苯胺,作为锂离子电池的无粘合剂阳极。《电分析化学杂志》,2022 年,914,第 116296 页。�10.1016/j.jelechem.2022.116296�。�hal-03688072�
这些植物极其危险。你究竟为什么要在马鞍峰教堂附近这么多家庭的土地上种植这些植物。我们不希望它们出现在圣胡安卡皮斯特拉诺、米申维耶霍或南加州的任何地方。你真丢脸。
锂离子电池 (LIB) 是现代技术不可或缺的一部分,但它们对易燃液体电解质的依赖带来了巨大的安全挑战,尤其是在电动汽车和大型储能系统中。本文介绍了利用定义-测量-分析-设计-优化-验证 (DMADOV) 方法开发阻燃电解质以提高 LIB 的安全性和性能。研究首先定义有机溶剂的性质与电化学稳定性之间的相关性,重点关注可能引起热失控的过度充电风险。通过对候选成分进行系统测量和分析,确定了影响阻燃电解质质量的关键因素。设计阶段优先建立 γ -丁内酯 (γ -BL) 的固体电解质界面 (SEI) 条件,以确保电解质在 LIB 中的性能和稳定性。优化阶段进一步优化了 SEI 形成条件,以解决初始设计期间发现的性能挑战,并结合相关制造工艺。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。研究表明,使用 γ -BL 显著降低了因过度充电引起的爆炸风险。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。值得注意的是,这项研究强调了稳健的 SEI 设计在开发具有高闪点有机溶剂(如 γ -BL)的阻燃电解质中的重要性,并通过专利技术的验证实验提供支持。这些进步不仅提高了 LIB 的安全性,而且还展示了提高电池性能的潜力,为能源存储解决方案的更广泛应用铺平了道路。
摘要。三元锂电池(TLB)和磷酸锂电池(LIPB)是当前电池市场中两种流行的电池类型。他们在性能和应用领域中具有自己的优势和缺点。通过分析两种类型的电池的结构,性能和应用,可以看出,TLB的阳极是具有高能量密度,强大的快速充电能力和出色的低温放电性能的八面体结构。阳极材料中镍,钴和锰的不同比率适用于多种未使用的场合。但是,TLB的高温稳定性很差,在高温下很容易发生热失控,并且它们的循环寿命相对较短。LIPB以其高安全性,较长的周期寿命和相对较低的成本而闻名。其独特的橄榄石晶体结构和稳定的P-O共价键具有出色的热稳定性,即使在高温下,电池也不容易分解。LIPB的缺点主要反映在其较低的能量密度和低温放电性能中。结合两种材料的优势来开发具有高能量密度和高安全性的新电池材料将是未来的重要研究方向。
摘要:我们证明,新设计的含有聚合用乙烯基反应基团的氨基酸磷二酰胺树脂 (APdA) 可用于通过 3D 多光子光刻制造亚 100 纳米结构。我们使用原子力和单分子荧光显微镜定量分析了纳米结构的特征尺寸、杨氏模量和功能化。我们的结果表明,由缬氨酸或丙氨酸组成的聚合物主链赋予单体疏水性,将聚合物纳米结构在水环境中的膨胀限制在 8% 以内。尽管膨胀很小,但实验表明,在干燥和潮湿条件下,杨氏模量变化高达 10 倍。为了增强基于 APdA 的结构的多功能性,我们加入了生物素功能化并将其用于固定细胞外囊泡。因此,这些发现凸显了基于 APdA 的纳米光刻光刻胶在生物医学和纳米技术应用方面的潜力。
本演示文稿中包含的某些陈述可以被视为适用的加拿大证券法的含义中的“前瞻性陈述”。前瞻性陈述通常可以通过使用诸如“信仰”,“可能”,“将”,“继续”,“持续”,“预期”,“预期”,“预期”,“期望”,“应该”,“应该”,“可以”,“计划”,“潜在”,“潜在”,“未来”,“未来”,“未来”或其他类似的表达方式的示例或趋势的示例中,该示例不适合任何类似的表述,该示例不在这些陈述是基于各种假设,无论是在本演讲中确定的,该公司认为在这种情况下是合理的。不能保证这种估计或假设将被证明是正确的,因此,实际结果或事件可能与前瞻性陈述所表达或暗示的期望有重大不同。前瞻性陈述涉及固有的风险和不确定性,其中大多数很难预测,其中许多都超出了公司的控制,并且不能保证未来的绩效。由于这些风险,不确定性和假设以及公司公开披露文件中包含的风险(读者应仔细审查),因此读者不应不适当地依赖这些前瞻性陈述。实际结果可能与任何前瞻性陈述中包含的结果有重大不同。此外,本沟通中包含的前瞻性陈述反映了公司在本演讲之日起对未来事件和观点的期望,计划或预测。公司预计随后的事件和发展可能会导致其评估,期望,计划和预测发生变化。公司可以选择在将来的某个时候更新这些前瞻性陈述,但它没有意图,也没有义务这样做,除非适用法律要求。这些前瞻性陈述不应被依赖为代表公司评估日期之日起的任何日期的评估。本公司的前瞻性声明通过本警告声明明确符合其全部资格。
这项维特罗研究的目的是比较单片氧化锆和多层氧化锆的骨折韧性,这是义齿修复体中的两种常用材料。断裂韧性是一个关键的机械性能,它决定了材料在压力下对裂纹传播的抗性,这对于牙齿修复的寿命和性能至关重要。使用计算机辅助设计和计算机辅助制造(CAD/CAM)技术制造了共有20张锆石(10个单片和10个多层)。使用Vickers Micro-Hardness测试仪使用压痕法测量椎间盘进行负载和断裂韧性。整体锆石的断裂韧性值(第1组)明显高于多层锆石(第2组)的断裂韧性值,平均值为5.394±0.378 MPa·M 1/2和4.358±0.394 MPa·M Pa·M 1/2(p <0.0001)。这些发现表明,整体氧化锆提供了出色的机械性能,使其成为更合适的高应力应用材料,而多层氧化锆则是前恢复的多层氧化锆,在前修复学位优先级。这项研究强调了在选择用于牙科修复体的氧化锆材料中的机械强度和美学吸引力之间的权衡,并为优化临床假体的材料选择提供了宝贵的见解。引言固定义齿牙齿领域的高级材料的开发显着影响了牙科修复体的寿命和性能。两种材料均根据其在固定假牙和氧化锆,特别是由于其出色的机械性能,包括高强度和断裂韧性,成为一种流行材料,使其成为牙冠和桥梁的理想选择[1]。单片氧化锆是用单个材料制成的,具有优异的强度和最小的分层风险[2]。然而,最近的进步引入了多层氧化锆,它结合了不同的层与不同的特性,以改善美观的同时试图维持结构完整性[3]。断裂韧性是评估牙科材料性能的关键参数,因为它决定了材料在压力下抵抗裂纹传播的能力[4]。氧化锆修复体的断裂性可能会受到几个因素的影响,包括材料的组成,层数,制造过程以及在功能过程中假体受到机械力的条件[5]。整体锆石虽然以其强度而闻名,但可能缺乏天然牙齿的美学特性,导致了多层氧化锆系统的引入[6]。这些多层系统结合了更透明的表面层,试图平衡强度和美学吸引力[7]。本文旨在评估和比较肢体修复应用中整体和多层锆的断裂韧性。通过研究这两种不同的氧化锆结构的机械性能,该研究旨在考虑功能性和美学需求,以洞悉牙科修复体的最佳材料选择。这些发现将有助于更好地理解这些材料在临床环境中的优势和局限性,最终指导未来的假体牙科进步。材料和方法材料在本研究中使用了两种类型的氧化锆材料:单片氧化锆和多层氧化锆。
