我们在阿根廷Centenario的锂生产的开始是该集团分为金属的重要里程碑,这将使Eramet成为第一个以工业规模生产碳酸盐的欧洲公司。与该地区的类似项目相比,我要感谢并祝贺我们的团队在令人印象深刻的时间范围内提供此DLE项目的决心,尽管技术,后勤和气象学挑战与偏远安第斯山远高度的4000米高度相关的技术,后勤和气象挑战。2025年,我们将在工厂增加生产,旨在成为锂可持续生产的全球关键参与者。
由于价格上涨和LI [Ni X Mn Y Co Z] O 2(X + Y + Z = 1)的资源供应链有限,(NMC)阴极材料,锂离子电池(LIB)回收技术已成为解决价格问题的最佳解决方案。主要是,常规的水透明过程已应用于LIB回收字段,以识别其价值。水均铝法的一个显着优势是它是启用Hydro-cathode®方法的桥梁。然而,必须在生产前体阴极材料的生产中使用杂质(掺杂剂)效果并行研究。不足的选择性杂质去除技术导致最终的NMC阴极活性材料中意外的电化学特性,这可能会被几种不同的杂质掺杂。因此,如果我们要将水电 - 情感®方法视为NMC阴极材料的主要回收过程,则仔细检查掺杂剂元件(无机和有机物)至关重要。
全球绿色能源通过脱碳向低碳经济转型,正在增加对锂等所谓关键资源的需求和开采。锂作为一种原材料,主要产自全球南方国家,其需求不断增长,引发了关于全球相互依存、生态和经济交流不平等以及全球南北能源转型不平衡的新辩论。在这种背景下,出现了绿色开采主义、绿色殖民主义和绿色牺牲区等概念。在本文中,我们以这一系列文献为基础,假设脱碳——作为能源转型的首要目标——影响了锂矿开采的决策和用于合法化的叙事。然而,锂矿开采的合法化如何受到脱碳和能源转型目标的影响仍是一个悬而未决的问题。使用了哪些叙事,由谁使用,如何使用,以及会产生什么样的社会政治和社会经济影响?阿根廷有许多锂矿开采项目,但冲突只发生在其中的一小部分。我们重点关注位于胡胡伊省奥拉罗斯-考查里盐沼的两个锂矿开采项目,那里几乎没有发生针对矿山的抗议活动。我们分析了政府和企业参与者所采用的叙事。分析的理论基础是基于对叙事的辩证理解,其中叙事被视为社会和全球-地方(多尺度)互动的偶然产物。我们认为,为了变得强大并使锂矿开采合法化,其支持者采用了两种核心叙事:绿色发展和工业化叙事以及气候保护叙事。这两种叙事都越来越多地与绿色能源转型的全球话语联系在一起,并且是新兴的绿色发展主义倾向的一部分,这种倾向体现在强制锂矿开采的新机构、法律和行政措施中。关键词:绿色发展主义、锂矿开采、能源转型、叙事、阿根廷。
不同电池化学成分的电池堆压力也不同,它对电池的成功化成也至关重要。在初始化成循环期间,均匀的固体电解质界面 SEI 的形成对电池循环寿命起着重要作用,而最佳电池堆压力 2,6 则高度依赖于此。如果压力不足,会导致颗粒和电解质之间的固体电解质界面增厚,从而中断电池中的电传输,导致功率和容量降低。未优化的压力施加设备还会导致颗粒级变形,这将在化成和长期循环后逐渐导致软包电池内部应力的累积,从而缩短循环寿命并增加容量衰减 1013 。
电能替代来源的主动发展和利用与其存储的需求越来越多,因为产生能力仅在特定时间工作,具体取决于太阳,风能等[1]。存储电能的方法之一是使用锂离子电池。电池系统是现代技术的关键组成部分,它需要解决此资源的适当利用。这在仅由电动汽车和医疗设备等内置电池供电的系统中尤其重要。通常,这种类型的电池系统包含多个电池,以达到高输出电压水平。为了确保高效和长期使用,必须监视充电过程。这些任务是电池管理系统(BMS)[2]的责任。
电动汽车 (EV) 的普及日益凸显了对锂离子电池 (LIB) 管理的可持续解决方案的需求。本研究评估了电动汽车中锂离子电池的再利用,重点关注其在瑞典境内储能系统中的应用。虽然许多研究都强调回收利用,但本研究对再利用过程进行了全面分析,研究了其环境和经济效益、技术和安全挑战以及监管考虑因素。我们进行了文献综述以了解当前的做法和进步,并辅以对行业专家的采访和对沃尔沃汽车高级工程师的详细案例研究。研究结果表明,与新的生产和回收工艺相比,再利用锂离子电池通过节约原材料、降低能耗和最大限度地减少碳排放,可显著减少对环境的影响。从经济角度来看,虽然认证和测试的初始成本很高,但长期效益包括节省成本、新的商业机会和减少对原材料的依赖。电池状况变化和安全风险等技术挑战以及监管和安全问题被确定为主要障碍。诊断工具和传感器技术方面的技术进步对于克服这些挑战至关重要。研究得出结论,尽管有这些好处,但通过改进技术、标准化和明确的法规来应对这些挑战对于最大限度地发挥电池再利用的潜力至关重要。未来的研究应侧重于提高诊断能力、探索创新的再利用应用,以及评估不断变化的法规对电池再利用可行性的影响
由于火灾和生命安全风险会威胁到应急响应人员,FRNSW 还要求制定 ESIP 并将其与应急计划一起提交。支持者在制定 ESIP 时,应参考 FRNSW 指南《应急服务信息包和战术消防计划》。ESIP 应包括有关锂电池的任何相关信息,以协助消防员制定干预策略(例如位置、数量、安全数据表、制造商建议等)。
Shomi Libatt Private Limited,以品牌“ Likraft”运营,成立于2019年,其任务是推进绿色能源解决方案。位于印度的德里NCR,Lokraft专门从事高性能锂离子电池的制造,其中包含了尖端的LMFP,NMC和LFP化学。,该公司的生产能力超过每月15,000台电池,在为电动储能,太阳能和能源存储系统提供储能解决方案的最前沿,ͬ*¢¢ͭ͟΄*¢ͭ͟΄ ͭ͟΄
基于锂的细胞的生产是欧洲基本重要性的话题,该项目中有38个Gigafactories,其中一些也在意大利。电池的可持续生产是从可再生能源存储能源的基础,并在能源过渡的角度使用了电动汽车的使用,这已经加速了国家的恢复和弹性PNRR计划,并为炮台具有重要的策略性研究活动提供了研究活动。因此,必须研究最佳生产方法,以创建针对最终应用定制的适当能量密度的细胞。根据欧洲的迹象,尤其是来自电池2030协调支持行动的创新,欧洲重要性的项目(https://battery2030.eu/),欧洲电池电池必须完全可持续,从材料的选择到其生产和最终回收。出于这个原因,该博士的研究将基于对锂后离子细胞的研究,该细胞不包含LIS和Kion