作为全固态电池的核心,固态电解质由于其相对于传统液态电解质的优势而受到充分重视。1–3 各类固态电解质中,聚合物电解质 4–7 由于其优异的机械性能和分子改性而成为研究的重点。8 但其室温离子电导率较差,严重限制了固态锂电池(SSLB)的使用。目前,已采用多种方法来提高固态聚合物电解质的离子电导率,如引入活性填料和惰性填料 9。锂盐,例如 LiTFSI、g-LiAlO 2、10、11 和 LiN 3、12,通常用作活性填料,因为它们可以直接为聚合物体系提供 Li+。惰性填料如 TiO2(参考文献 13)、ZrO2 14 和 Al2O3(参考文献 15,16)可以通过降低聚合物结晶度或将聚合物链与 Li+偶联来提高体系的离子电导率。16,17
co 2分离在应对温室效应引起的气候变化方面起着至关重要的作用,并证明天然气和沼气的能源质量。高度必需的CO 2分离技术。膜分离技术在CO 2分离过程中特别有吸引力。但是,交易关系限制了气体分离过程中聚合膜的气体分离效率。因此,有必要准备高性能膜,例如混合基质膜(MMMS)进行CO 2分离。本综述主要集中于制备方法,材料特性和CO 2分离效率,其中包含各种纤维,例如修改的ZIF,MOF和GO,以及新兴的MOF基于MOF的复合材料,2D MOF和2D MXEN。修改后的填充剂与聚合物基质表现出更高的兼容性,从而提高了机械稳定性和MMM的CO 2分离效率。2D材料可以显着提高MMM的CO 2分离效率,这是由于其分层结构和气体传输方式的有效调节。最后,提供了气体分离过程中的未来方向和结论。
- 海纳·莫勒斯 (Heiner Möllers)(波茨坦),《监察长部长级工作:沃尔夫冈·阿尔滕堡 (Wolfgang Altenburg) 的例子》 - 卡斯滕·里希特 (Carsten Richter)(柏林),《秘密国家》。 BMV 中的心理战组织与实践 - Christoph Nübel(波茨坦),“平民控制”。 BMV 民事部门和军事部门之间的权力斗争
较早提到的技术采用的通信设备由于其绝缘性而无法通过聚酰亚胺来阻止。由于聚合物在这些设备中的各种组件的粘合剂,涂层和外壳中广泛使用,因此高度要求将EMI屏蔽能力纳入这些材料中。电导率是改善聚合物材料的EMI屏蔽性能的关键参数之一。5在绝缘聚合物(例如聚酰亚胺等绝缘聚合物)中纳入llers会导致形成宿主矩阵内高度传导的渗透网络。因此,可以有效地增强绝缘聚合物的电导率和EMI屏蔽效果。6,例如,由于其内在的电导率高,二维(2D)形态和
将这些出色的性能转移到复合材料中,是生产出机械性能大幅改善的聚合物复合材料的关键。将其性能转移到此类材料中绝非易事,因为材料性能的增强显然取决于石墨烯片与聚合物基质之间的界面相互作用的效率,以及片的方向和大小。[5–7] 此外,石墨烯在外部应力下可能会皱缩或弯曲,从而减少应力转移到嵌入的石墨烯上,并且几乎不能起到增强作用。拉曼光谱是检查嵌入聚合物基质中的石墨烯薄片应变的重要工具。化学键对局部应变条件的敏感性会导致拉曼振动带的偏移。[6,8,9] Galiotis 等人率先使用拉曼光谱测量复合材料中填料的应力/应变特性,[10] 用于测量碳纤维和芳族聚酰胺等纤维。 [11] 他们表明,拉曼光谱可以测量纤维应变分布,随后将其转化为界面剪应力分布。[12,13] 对于具有纳米级半径的一维填料,如单壁和双壁碳纳米管,拉曼光谱也可以成功测定此类应变分布。[14]
摘要:目前,复合材料在工程和技术的各个方面都发挥着重要作用,其应用范围不断扩大。最近,人们更加关注天然填料,因为它们适合作为热塑性基质中的增强材料,从而改善这些聚合物的机械性能。生物填料因其成本低、强度高、无毒、可生物降解和易得而得到使用。目前,咖啡渣 (SCG) 作为天然填料越来越受到关注,因为每天都会产生大量的 SCG(咖啡加工产生的食品废料)。这项研究使我们能够确定具有已知技术和工艺参数的活性污泥微生物对含有咖啡渣填料的复合材料机械性能的长期影响。配件由用作基质的高密度聚乙烯 (PE-HD) 和用作改性剂的基于咖啡渣 (SCG) 的填料组成。已确定复合材料的组成及其在生物反应器中的停留时间直接影响接触角值。接触角值的变化与测试材料上生物膜的形成有关。在生物反应器中测试的所有样品的接触角都有所增加,样品 A (PE-HD) 的最低值约为 76.4 度,其余含有咖啡渣填充物的复合材料样品的接触角较高,约为 90 度。研究证实,复合材料中咖啡渣的比例增加会导致微生物的多样性和丰富度增加。在生物反应器中暴露一年多后,含有 40% 咖啡渣的复合材料的微生物数量最多,多样性也最强,而含有 30% SCG 的复合材料位居第二。纤毛虫(Ciliata),尤其是属于 Epistylis 属的固着纤毛虫,是活性污泥和生物反应器中样品浸入生物膜后观察到的最常见和数量最多的微生物群。所进行的研究证实,使用聚合物复合材料模塑件和废咖啡渣形式的填料作为载体可以有效增加生物反应器中的微生物种群。
从可再生资源中生成单体、预聚物和填料 生物基/可持续热塑性塑料、热固性塑料及其复合材料的合成、配方和结构-性能关系 材料类别:氨基塑料、苯并恶嗪、纤维素和纤维素材料、弹性体和橡胶、环氧树脂、纤维复合材料、互穿网络、木质素、纳米颗粒和纳米复合材料、植物油及衍生物、酚醛树脂、聚酯、多糖及衍生物、聚氨酯(常规和非异氰酸酯、泡沫)、有机硅、乙烯基酯树脂、玻璃聚物 工艺方法:增材制造、化学回收、复合材料和纳米复合材料加工、压缩成型、挤出、注塑成型、机械回收 表征技术:FTIR、NIR 和 NMR 光谱、防火测试、气体吸附和表面积分析、GPC、质谱、渗透性测试、孔隙率测定、流变学、热分析、 x射线衍射
纳米复合材料融合生物活性物质的进步有可能改变食品包装部门。已将不同的纳米填料纳入了聚合物基质中,以开发具有改进的机械,热,光学和屏障特性的纳米复合材料。纳米辉石,纳米硅,碳纳米管,纳米纤维素和壳聚糖/壳蛋白纳米颗粒已成功包含在聚合物中,导致具有先进特性的包装材料。纳米结构的抗菌膜在食品行业中具有有希望的应用程序。纳米复合纤维,其中含有抗菌物质,例如精油,细菌素,抗菌酶或金属纳米颗粒。这些活性纳米复合材料是有用的包装材料,可增强食品安全。纳米复合材料是在食品包装应用中用作传统包装塑料的实用且安全的替代品的有希望的材料。
抽象目标牙齿藻酸盐是牙科中用于再现内部和外牙性结构的印象材料之一。藻酸盐是一种非常实惠且易于使用的材料,但是由于其泪液强度较低,因此在准确性方面仍然存在局限性。提高藻酸盐撕裂强度的一种方法是添加填充剂。聚甲基甲基丙烯酸酯(PMMA)是有机填充剂的一个例子,可以用作有效提高尺寸稳定性的替代增强。因此,这项研究的目的是评估添加PMMA作为有机纤维的藻酸盐的泪液强度。材料和方法这项实验研究由四组样品组成。样品A作为对照组,而样本B包括处理的样品,其添加了3WT%(B1),5wt%(B2)和7WT%(B3)的样品。每组有五个样本。使用通用测试机根据ISO标准21563:2021进行泪强度测试,然后使用扫描电子显微镜(SEM)和傅立叶变换Infra-Red(FTIR)光谱进行表征。统计分析然后在Tukey的测试后通过单向方差分析(ANOVA)评估泪强度结果(p <0.05)。结果对照样品(a)的泪强度为0.540 N/mm。同时,处理过的样品的泪强度为0.612 N/mm(B1),0.663 N/mm(B2)和0.596 N/mm(B3)。使用PMMAFILLER的对照与处理的样品之间存在差异(P <0.05)。这些结果由SEM和FTIR结果支持与藻酸盐多孔结构的物理闭合或阻断其功能组的略有变化有关。结论将PMMAFILER添加到牙齿藻酸盐中,随着泪强度的提高提供了增强。这可能会影响印象的准确性,尤其是当材料从口服结构中迅速去除时。其他研究可能会进一步评估生物相容性属性。
