黑色素瘤是恶性程度最高、转移性最强的肿瘤之一,免疫治疗和靶向治疗对黑色素瘤有一定的治疗作用,但相当一部分患者在治疗后仍然产生耐药性。最近的研究表明,长链非编码RNA(lncRNA)是公认的癌症调控因子,可以调控细胞增殖、转移、上皮间质转化(EMT)进展和免疫微环境等多种细胞过程。lncRNA在恶性肿瘤中的作用备受关注,而lncRNA与黑色素瘤的关系还有待进一步研究。本文综述了与黑色素瘤发生发展密切相关的抑癌和致癌lncRNA,总结lncRNA在免疫微环境、免疫治疗和靶向治疗中的作用,为临床治疗提供新的靶点和治疗方法。
肝癌是最致命的胃肠道恶性肿瘤之一。新兴证据强调了长期非编码RNA(LNCRNA)在肿瘤发生中的关键作用,ST8SIA6-AS1鉴定为一种新型的致癌性LNCRNA,这有助于肝癌进展。ST8SIA6-AS1在肝癌组织中始终上调,并且与不利的预后密切相关。此外,它在检测HCC时表现出很高的诊断效率。ST8SIA6-AS1参与了各种细胞过程,包括增殖,迁移和入侵,主要是通过其作为竞争性内源RNA(CERNA)的功能,从而促进了肝癌发生和疾病的进步。这篇综述提供了对肝细胞癌(HCC)中ST8SIA6-AS1的分子功能和调节机制的详细检查,并强调了其作为肝癌的有希望的生物标志物的潜力,旨在推动HCC管理创新治疗策略的发展。
Katia Grillone(意大利Catanzaro的Magna Graecia)Serena Ascrizzi(意大利卡塔萨罗大学的Magna Graecia)Paolo Cremaschi(计算生物学研究中心,意大利人类技术研究中心)意大利的人类technopole罗伯塔·罗卡(Roberta Rocca)(意大利卡塔扎罗大学的麦格纳·格雷西亚(Magna Graecia))Caterina riillo(意大利卡塔萨罗大学的Magna Graecia)Francesco Conforti(意大利Cosenza,Cosenza,Annunziata Hospital) Ele caracciolo(意大利卡坦扎罗大学的Magna Graecia大学)Stefano Alcaro(意大利卡塔萨罗的Magna Graecia” Bruno Pagano(那不勒斯大学)费德里科二世大学,意大利) Antonio Randazzo(那不勒斯费德里科二世大学,意大利) Pierosandro Tagliaferri(大希腊大学,意大利) Francesco Iorio(人类科技城,意大利) Pierfrancesco Tassone(大希腊大学,意大利)
Non coding RNAs (ncRNAs), as long non coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNA (miRNAs) are key regulators of many cellular processes and are known to be widely expressed in the brain where they play crucial roles in proliferation, survival, metabolism and differentiation of neuronal cells ( Salta and De Strooper, 2017 ).在NCRNA中,LNCRNA在转录和转录后水平上的基因表达的新型表观遗传调节剂受到了越来越多的关注(Nadhan等,2022)。随着测序技术的进步,转录组学研究逐渐识别出新的LNCRNA,即使仍然缺乏全面的功能注释。据估计,大约40%的lncRNA在脑组织中特异性表达,它们参与了不同的脑生理功能(Zimmer-Bensch,2019; Srinivas et al。,2023)。在几种神经退行性病理中,LNCRNA的失调表达与神经元损伤有关,例如AD,帕金森氏病(PD),肌萎缩性侧面硬化症(ALS)和亨廷顿氏病(HD)(HD)(HD),但如何影响这些疾病的疾病,这些疾病是否仍未影响这些疾病的发作(srinivas et srinivas等)。到目前为止,在AD中,最有记录的LncRNA放松管制是lncRNA,是源自已知的AD相关基因的MRNA的反义转录,作为Bace1-AS,51A,17A和BC200,这些基因已直接参与A iposition和neuromation(Fagsphopphormation and neuromation and flagiration and a a a a iarlimation(fagsphoft)。等人,2012年; Ahmadi等人,2020年;此外,对死后人类大脑的转录组分析表明,尽管LNCRNA在疾病发作中的作用仍然难以捉摸,但AD患者的基因表达显着改变(Cain等,2023)。这一证据,以及他们对新的AD治疗策略的开采的可能性,逐渐要求对LNCRNA在AD中的作用进行更深入的研究(Balusu等,2023)。
LncRNA 是一类重要的非编码 RNA,据报道与多种人类病理状况有关。越来越多的证据表明药物可以调节 lncRNA 的表达,这使得将 lncRNA 开发为治疗靶点成为可能。因此,开发预测 lncRNA-药物关联 (LDA) 的计算机方法是开发基于 lncRNA 的疗法的关键步骤。在本研究中,我们使用基于 lncRNA 和药物相似性网络的图卷积网络 (GCN) 和图注意力网络 (GAT) 来预测 LDA。结果表明,我们提出的方法在五个数据集上取得了良好的性能(平均 AUC > 0.92)。此外,案例研究和 KEGG 功能富集分析进一步证明该模型可以有效识别新型 LDA。总体而言,本研究提供了一个基于深度学习的预测新型 LDA 的框架,这将加速针对 lncRNA 的药物开发进程。
随着基因组测序技术的发展,水果和蔬菜中发现了许多长链非编码RNA(lncRNA)。lncRNA主要由RNA聚合酶II(Pol II)或植物特异性Pol IV/V转录和剪接,表现出有限的进化保守性。lncRNA通过基因表达调节、与激素和转录因子的相互作用、microRNA调控以及参与可变剪接等多种机制,对水果和蔬菜的各个方面进行复杂的调控,包括色素积累、生殖组织发育、果实成熟以及对生物和非生物胁迫的反应。本综述全面概述了lncRNA的分类、基本特征,最重要的是,对其功能和调控机制的最新进展进行了了解。
背景:RNA甲基化修饰是以表观遗传学方式调节的重要后翻译后修饰。最近,n 6-甲基腺苷(M 6 A)RNA修饰已成为肿瘤生物学的潜在表观遗传标记。方法:LIHC的基因表达和临床病理数据是从癌症基因组图集(TCGA)数据库中获得的。使用PERL和R软件通过基因表达分析确定长期非编码RNA(LNCRNA)和M 6 A与M 6与A之间的关系。共表达网络,并使用单变量COX回归分析鉴定了与预后相关的相关LNCRNA。然后将这些LNCRNA分为两个簇(群集1和群集2),以确定不同LNCRNA亚型之间的存活率,病原参数和免疫细胞浸润的差异。进行了最低的绝对收缩和选择算子(Lasso)进行回归分析和预后模型。HCC患者被随机分为火车组和测试组。根据模型的中位风险评分,HCC患者分为高风险和低风险组。我们使用火车组建立了模型,并通过测试组确认了模型。使用R软件分析了肿瘤突变负担(TMB),免疫逃避和免疫功能的M 6 A-LNCRNA。AL355574.1被确定为重要的M 6 A相关LNCRNA,并选择进行进一步研究。伤口愈合和Transwell分析用于确定细胞迁移能力。最后,进行了体外实验,以确认AL355574.1对HCC生物学功能和可能的生物学机制的影响。HUH7和HEPG2细胞,通过CCK-8,EDU和菌落形成测定法测量细胞增殖能力。MMP-2,MMP-9,E-钙粘着蛋白,N-钙粘着蛋白和Akt/mTOR磷酸化的表达水平均由Western blotting确定。结果:通过一致的聚类分析将具有显着预后值的LNCRNA分为两个亚型。我们发现lncRNA亚型之间的临床特征,免疫细胞浸润和肿瘤微环境(TME)显着差异。我们的分析表明,这些不同的LNCRNA亚型与免疫浸润和基质细胞之间的显着相关性。我们使用LASSO回归创建了最终风险概况,其中特别包括三个LNCRNA(AL355574.1,AL158166.1,TMCC1-AS1)。构建了由三个LNCRNA组成的预后特征,该模型显示出出色的预后预测能力。低风险队列的总生存期(OS)显着高于火车和测试组的高风险队列。两个风险评分[危险比(HR)= 1.062; P <0.001]和阶段(HR = 1.647; P <0.001)被视为通过单变量和多元COX回归分析的HCC预后独立指标。在HUH7和HEPG2细胞中,AL355574.1敲低抑制了细胞的增殖和迁移,抑制了MMP-2,MMP-9,N-钙粘着蛋白和AKT/MTOR磷酸化的蛋白质表达水平,但促进了E-Cadherin的蛋白质表达水平。
象牙lncrna在七叶树蝴蝶中调节季节性颜色图案Richard A. Fandino A1,Noah K. Brady A,Martik C. C. Chatterjee A,Jeanne M. C. McDonald A,Luca Livraghi B,Luca Livraghi B,Karin R.L. L. L. van der Burg a,c,C. D和Robert D. Reed A1 A康奈尔大学生态与进化生物学系;伊萨卡,纽约,美国。B乔治华盛顿大学生物科学系;华盛顿特区,美利坚合众国。 c克莱姆森大学生物科学系;克莱姆森,南卡罗来纳州,美国。 d分子生物学和遗传学系,康奈尔大学;伊萨卡,纽约,美国。 1可以解决通讯:Richard A. Fandino,Robert D. Reed电子邮件:raf272@cornell.edu,robertreed@cornell.edu作者贡献:R.A.F. 和R.D.R. 设计的研究。 R.A.F.,N.K.B.,M.C.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-Z收集和/或分析的数据。 R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:B乔治华盛顿大学生物科学系;华盛顿特区,美利坚合众国。c克莱姆森大学生物科学系;克莱姆森,南卡罗来纳州,美国。d分子生物学和遗传学系,康奈尔大学;伊萨卡,纽约,美国。 1可以解决通讯:Richard A. Fandino,Robert D. Reed电子邮件:raf272@cornell.edu,robertreed@cornell.edu作者贡献:R.A.F. 和R.D.R. 设计的研究。 R.A.F.,N.K.B.,M.C.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-Z收集和/或分析的数据。 R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:d分子生物学和遗传学系,康奈尔大学;伊萨卡,纽约,美国。1可以解决通讯:Richard A. Fandino,Robert D. Reed电子邮件:raf272@cornell.edu,robertreed@cornell.edu作者贡献:R.A.F.和R.D.R.设计的研究。R.A.F.,N.K.B.,M.C.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-Z收集和/或分析的数据。 R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:R.A.F.,N.K.B.,M.C.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-Z收集和/或分析的数据。R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:R.A.F.和R.D.R.写了手稿。E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:E.M.-P。和R.D.R.提供了设施,资源和资金。竞争利益声明:作者声明没有竞争利益。分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:
子宫菌群子宫内膜癌(UCEC)是发达国家最普遍的恶性肿瘤之一,每年有50,000多人死亡(1)。随着人口的年龄和环境污染的增加,UCEC的发病率和死亡率也上升。年龄,种族和先前恶性肿瘤病史等因素与UCEC的发作密切相关(2,3)。尽管有多种治疗选择,例如手术,放疗和化学疗法,但UCEC仍然容易转移和饲养(4)。基于RNA的治疗剂最近被发现是通过RNA疫苗,RNA免疫调节和RNA干扰来对抗癌症的重要策略(5)。长的非编码RNA(LNCRNA)由200多个核苷酸组成,显示出越来越多地参与各种恶性癌的进展(6)。lncRNA通过靶向miRNA轴(7),参与UCEC细胞增殖,侵袭和代谢变化。实验研究表明,Linc00958调节IGF2BP3的功能,因此参与UCEC的肿瘤发生和进展(8)。鉴于这些关键特征,LNCRNA逐渐成为UCEC的新型诊断和预后生物标志物。
引入了严重的缺氧 - 缺血性诱导的急性心肌梗死(AMI),尽管我们对低氧分子机制的理解有限,急性心肌梗死(AMI)仍然是世界范围内死亡的主要原因之一,这些机制负责低氧 - 异常介导的心脏介导的心脏细胞损害(1-3)。因此,我们迫切要发现新颖的分子机制并为AMI开发新的疗法(3)。长的非编码RNA(LNCRNA)被定义为具有强生物学功能的〜200个核苷酸的非编码RNA。最近的研究已经确定,一组LNCRNA与AMI有关,该研究可能代表了一类新型的诊断生物标志物和治疗靶标(4,5)。BIM诱导死亡(Morrbid)的髓样RNA调节剂是2016年鉴定出的白细胞特异性lncRNA,在小鼠和人类之间是保守的,是白细胞寿命的关键控制因素(6)。另一项研究报告说,白细胞特异性的莫比德与左心室肥大有关(7)。迄今为止,尚不清楚心肌细胞是否可以表达Morrbid以及Morrbid的角色在心脏病中,例如AMI。为此,我们已经确定人类和小鼠心肌细胞都可以表达大量的莫比德。Morrbid的表达显着增加,并且在AMI后小鼠心脏中显着增加。因此,当前的研究旨在确定Car-diac肌细胞Morrbid在AMI中的作用,并确定涉及的潜在细胞和分子机制。