结直肠癌 (CRC) 是世界第三大癌症,转移性 CRC 大大增加了全球癌症相关的死亡人数。转移涉及许多在分子水平上受到严格控制的复杂机制,而转移是 CRC 患者死亡的主要原因。最近,人们已经清楚,外泌体(由非肿瘤细胞和肿瘤细胞释放的细胞外小囊泡)在肿瘤微环境 (TME) 中起着关键的通讯介质作用。为了促进 TME 和癌细胞之间的通讯,非编码 RNA (ncRNA) 起着至关重要的作用,被认为是基因表达和细胞过程(如转移和耐药性)的有效调节剂。NcRNA 现在被认为是基因表达和许多癌症标志(包括转移)的有效调节剂。外泌体 ncRNA,如 miRNA、circRNA 和 lncRNA,已被证明会影响多种导致 CRC 转移的细胞机制。然而,将外泌体 ncRNA 与 CRC 转移联系起来的分子机制尚不清楚。本综述重点介绍了外泌体 ncRNA 在 CRC 转移性疾病进展中发挥的重要作用,并探讨了 CRC 转移患者可以选择的治疗方案。然而,外泌体 ncRNA 治疗策略开发仍处于早期阶段;因此,需要进一步研究以改进给药方法并找到新的治疗靶点,以及在临床前和临床环境中确认这些疗法的有效性和安全性。
摘要:癌细胞通过糖酵解利用葡萄糖维持肿瘤细胞增殖。然而,长链非编码RNA(lncRNA)对骨肉瘤(OS)细胞糖酵解的影响尚不清楚。本研究旨在探讨lncRNA XLOC_005950/hsa‑microRNA (miR)‑542‑3p/磷酸果糖激酶肌肉(PFKM)轴在OS进展中对葡萄糖代谢、细胞增殖和凋亡的调节作用。通过逆转录定量PCR分析检测OS组织和细胞中lncRNA XLOC_005950、hsa‑miR‑542‑3p和PFKM的表达。利用CRISPR/Cas9基因编辑技术敲除MG63细胞中的lncRNA XLOC_005950表达。通过Cell Counting Kit-8实验、流式细胞术、PFKM活性、葡萄糖和乳酸含量测定,探讨lncRNA XLOC_005950敲除和hsa-miR-542-3p过表达对OS细胞表型的影响。通过双荧光素酶报告基因检测,验证lncRNA XLOC_005950、hsa-miR-542-3p与PFKM的靶向关联。结果表明,lncRNA XLOC_005950在OS组织和细胞中的表达上调。功能实验表明,lncRNA XLOC_005950敲除降低了PFKM活性,降低了细胞内葡萄糖和乳酸含量,抑制了细胞增殖,增加了OS细胞的凋亡。此外,lncRNA XLOC_005950敲除
大多数患者在寻求治疗时失去了最好的手术机会[3,4]。因此,确定结肠癌的新型诊断和治疗靶标对于增强其诊断和治疗以及改善患者预后至关重要。衰老代表对各种应力信号的细胞反应,可保护细胞免受不必要的伤害。在癌症的背景下,衰老具有双重功能:它通过抑制受损细胞的增殖而充当肿瘤抑制因子,同时通过促进炎症环境来促进癌症。此外,癌细胞也可以表现出衰老反应。这既提出了癌症顺序治疗的挑战和机会,然后利用衰老疗法进行了鼻溶疗法[5]。长的非编码RNA(LNCRNA)是一种超过200个核苷酸的非编码RNA。它通过调节基因表达而在生物学上发挥作用,并且对癌症的发展和进展至关重要[6]。lncRNA在调节结肠癌中的各种过程中发挥了重要作用,包括细胞增殖凋亡和细胞死亡,以及影响细胞周期迁移,能力,艾symal转变(T),癌症干细胞行为以及对结肠癌疗法的耐药性[7]。E2F1反应LncRNA LIMP27与P27 mRNA竞争与细胞质HNRNP0结合,选择性下调P27表达。这种相互作用会导致G0/G1相细胞周期,并促进缺乏p53的结肠腺癌细胞的增殖,肿瘤性和治疗性[8]。研究结肠腺癌中与衰老相关的LincrNA可以增强我们对这种癌症发作和进展的分子机制的理解,同时也为发展新的潜在干预策略铺平了道路。
已经研究了几类在细胞功能中具有复杂作用的RNA-RNA相互作用(RRI),例如miRNA-target和lncRNA。因此,在过去十年中提出的RRI生物信息学工具是针对这些特定类别的。有趣的是,在文献中具有一些潜在的生物学作用的文献中有些未引起的mRNA-mRNA相互作用。因此,需要在更全面的设置中使用高通量通用RRI生物信息学工具。在这项工作中,我们重新访问了两个RRI分区函数算法,PIRNA和RIP。这些是对RRI实施最全面和计算中最密集的热力学模型的等效方法。我们提出了更简单的模型,这些模型被证明保留了更复杂模型捕获的绝大多数热力学信息。具体来说,我们通过忽略系统的熵并显示其与基本对计数模型的等效性来简化能量模型。我们允许碱基对的不同权重以最大化与完整热力学模型的相关性。我们新开发的算法Bppart比Pirna快225×,并且由于其简单性和数量级减少了动态编程表的数量,因此更易于表达和易于分析。仍然,基于我们对真实和随机生成的数据的分析,其分数与37°C处的PIRNA的相关性为0.855。最后,我们说明了这样简单模型的一个用例,以生成有关特定RNA在各种疾病中的作用的假设。我们已公开使用工具,并相信这种更快,更具表现力的模型将使物理指导的信息在复杂的RRI分析和预测模型中更容易访问。
简介:miRNA靶基因的预测和鉴定对于理解mir NAS的生物学至关重要。报告的长期编码RNA(LNCRNA),MicroRNA 195-497簇宿主基因(MIR497HG)调节是由多个非编码RNA(NCRNA)(例如microRNAS(miRNA))介导的。miR497Hg在各种癌症中被认为是肿瘤抑制剂。然而,miR497Hg及其衍生的miRNA的影响在很大程度上是未知的,仍然需要进一步探索。采用实验方法通常很具有挑战性,因为某些LNCRNA难以通过当前的隔离技术识别和隔离。因此,引入了生物信息学工具以帮助这些问题。这项研究试图搜索和识别针对MiR497Hg的3'untranslated区域(3'UTR)的miRNA。方法:在这里,采用了生物信息学工具来识别潜在针对miR497hg的3'UTR的独特miRNA列表。结果:使用MIRDB提取了靶向MiR497Hg的3'UTR的57个候选miRNA。同时,Starmir预测了291个miRNA,可能针对MiR497Hg的3'UTR。使用Venny 2.1.0获得了36个miRNA的共同列表,并使用Starmir的LogitProb评分进一步缩小。最后,确定了总共4个miRNA(HSA-MIR-3182,HSA-MIR-7156-5P,HSA-MIR-452-3P和HSA-MIR-2117)。通过Targetscan鉴定出鉴定的miRNA的mRNA靶标。最后,使用富集进行了基因和基因组(KEGG)富集分析的基因本体论(GO)和京都百科全书(KEGG)富集分析。结论:这一发现可能有助于理解miR497Hg及其调节性miRNA之间的复杂相互作用。此外,在本研究中还提供了计算miRNA-target预测的比较分析,可能会为miRNA用于癌症研究中的生物标志物的基础。马来西亚医学与健康科学杂志(2024)20(1):161-167。 doi:10.47836/mjmhs.20.1.21马来西亚医学与健康科学杂志(2024)20(1):161-167。 doi:10.47836/mjmhs.20.1.21
三年前,也就是 2021 年,我们的第一个研究课题“将新型统计和机器学习方法应用于高维临床癌症和(多)组学数据”成为了 Frontiers 读者的一大亮点,浏览量超过 52K,下载量超过 13K。它通过突出统计遗传学和方法学领域的前沿研究,为该领域做出了巨大贡献。在第一卷成功的基础上,我们通过发表四篇文章,带来了另一个关于该研究主题的富有洞察力和发人深省的研究课题。在第二卷中,我们继续关注癌症相关研究中高维临床和(多)组学数据的新型统计和机器学习方法的开发和应用。随着人工智能 (AI) 的发展,尤其是深度学习 (DL),第二卷中的四篇文章中有三篇研究了使用 DL 进行多组学数据集成的方法,而第四篇文章研究了一种新的测序数据处理方法。随着深度学习的快速发展,将基于深度学习的方法应用于多组学整合方面取得了重大进展。在一篇评论文章中,Wekesa 和 Kimwele 全面讨论了在疾病诊断、预后和治疗中使用深度学习技术进行多组学数据分析的最新趋势。他们特别关注涉及非编码 RNA 的多组学数据集,例如 miRNA 和长链非编码 RNA (lncRNA),这些 RNA 在癌症发展和研究中起着至关重要的作用。重点介绍了几种用于集成和解释的新型深度学习方法,包括对比学习、DeepLIFT、分解机器深度学习 (FMDNN) 和图神经网络 (GNN)。此外,他们评估了将深度学习方法与计算生物学中的区块链和物联网 (IoT) 等新兴技术相结合的研究。乳腺癌和脑癌检测中的案例研究表明,将尖端技术和深度学习方法相结合可以如何促进癌症
背景:肿瘤突变负担(TMB)已成为癌症耐药性的重要预测因素。但是,黑色素瘤中TMB功能的基本机制仍然难以捉摸。方法:从TCGA队列中提取了472例黑色素瘤患者的体细胞突变,RNA测序(RNA-Seq),miRNA-Seq(miRNA-Seq)和临床特征的数据。从癌细胞系百科全书中获得黑色素瘤细胞系的RNA-SEQ数据,细胞系对治疗剂的敏感性在癌症治疗剂反应门户中可用。TMB是根据体细胞突变数据计算的。使用差异表达的基因分析,加权基因共表达网络分析,蛋白质 - 蛋白质相互作用网络,最少的公共肿瘤学数据元素和生存分析,以确定与TMB相关的集线器基因。构建了竞争性的内源性RNA(CERNA)网络,以探索集线器基因功能的分子机制。 分析了关键基因对药物敏感性的影响,以研究其临床意义。 结果:TMB水平升高与改善的生存结果显着相关。 此外,在低TMB组中,相对于高-TMB组,在低TMB组中,六个肿瘤浸润的免疫细胞,包括幼稚的B细胞,调节性T细胞,静止的CD4 T细胞,存储B细胞,活化的肥大细胞和静止的NK细胞。 最后,我们观察到与TMB相关的基因与AKT/MTOR途径抑制剂的不同治疗反应有关。构建了竞争性的内源性RNA(CERNA)网络,以探索集线器基因功能的分子机制。分析了关键基因对药物敏感性的影响,以研究其临床意义。结果:TMB水平升高与改善的生存结果显着相关。此外,在低TMB组中,相对于高-TMB组,在低TMB组中,六个肿瘤浸润的免疫细胞,包括幼稚的B细胞,调节性T细胞,静止的CD4 T细胞,存储B细胞,活化的肥大细胞和静止的NK细胞。最后,我们观察到与TMB相关的基因与AKT/MTOR途径抑制剂的不同治疗反应有关。此外,我们将FLNC,NEXN和TNNT3确定为与TMB相关的中心基因,并构建了其CERNA网络,其中包括五个miRNA(Has-MiR-590-3p,Has-MIR-374B-5P MIAT,NR2F2AS1等)。结论:我们确定了三个与TMB相关的关键基因,建立了CERNA网络,并研究了它们对治疗反应的影响,这可以提供对未来精确医学的见解。
基于Duchenne肌肉营养不良的研究:转录后控制和非编码RNA在原发性肌病中正常和营养不良的肌肉发育中的作用,Duchenne肌肉营养不良(DMD)肯定是最相关的,这是由于扩散和灭绝而是最相关的。缺陷驻留在X连锁肌营养不良蛋白基因的突变中:在没有这种蛋白质的情况下,肌肉逐渐开始恶化。由于该疾病是由单个基因(单基因疾病)突变引起的,因此从一开始就考虑了基因治疗方法。几年前,我们开创了一种策略,与基因替代不同,包括修饰肌营养不良蛋白mRNA:通过对称为RNA剪接的细胞程序作用,并防止在成熟mRNA(外显子跳过)中包含特定的突变体外显子(跳过),可以恢复恢复过度蛋白质蛋白质蛋白质蛋白质蛋白质蛋白质蛋白质蛋白质的产生。最近,我们将分析扩展到控制肌营养不良蛋白mRNA剪接的蛋白质。在一个研究中,我们发现缺乏特定蛋白(CELF2A)会诱导外显子45的自然跳过,这是一种机制,该机制允许在具有外显子44缺失的DMD受试者中恢复肌营养不良蛋白合成。该项目的一个目标是设计和建立遗传和/或药理治疗,以调节TheCELF2A活动,并测试其能力诱导外显子45的能力。发现这种可能的抑制剂可能会为那些可以治愈外显子45的患者的药理治疗开辟道路。从更一般的角度来看,这项研究还指出了研究不同患者的基因组环境以促进个性化疗法的临床发育的相关性。第二行活动旨在发现新型非典型RNA,长的非编码RNA(LNCRNA)和圆形RNA(CIRCRNA)的DMD发病机理中的作用。这些分子最近被发现并在细胞功能中起重要作用。此外,他们的放松管制通常与不同的病理相关。这个新的创新领域的研究领域有望大大提高我们对控制肌肉功能的基本分子过程的理解,并且还应该构成一个庞大且在很大程度上没有开发的领域,以开发新的疗法和诊断。
在癌症,遗传和表观遗传学改变会导致转录程序失调,这使得癌细胞高度依赖基因表达的某些调节剂。这样的调节剂,例如转录因子(TFS),几乎是癌症的罪魁祸首(1)。例如,slug和蜗牛参与上皮到间质转变(EMT)(2),而STAT3是EGFR途径下游的主要效应器之一(3)。最近,非编码RNA(miRNA,LNCRNA等)已被揭示为重要的转录调节剂,其改变与多种机制有关,导致癌变,肿瘤进展或耐药性(4-8)。最新是一种关键现象,导致治疗失败并降低患者的生存率。大多数化学疗法药物都会诱导DNA损伤,最终促进癌细胞的死亡。转录因子或染色质调节剂的改变会影响肿瘤应对这种损害的能力,进而影响其生存率,从而使其对治疗具有抵抗力(9)。存在几个例子,但一个众所周知的情况是涉及核因子kappa b(nf-k b)蛋白。NF-K B途径的激活与多种化疗药物(包括氟嘧啶(10),紫杉烷(11)或白丁衍生物(12)中的多种化学疗法药物有关(12)。分别在thelastcase,TranscriptionFactorssuchasfoxo,Runx1andRunx2playimportanTrolersIntrolersIntrolerSinmediatiandimatianmediatiandimiatiation对Lapatinib,Quizartinib或Vemurafenib的抗性(14)。与化学疗法相似,抗药性治疗方法与癌细胞对这种药物的敏感性降低通常与驱动器癌基因的改变,关键信号通路的激活以及通过不同的信号传导途径(13)有关(13)。最近,基于免疫检查点阻塞的免疫疗法已被批准用于治疗几种恶性肿瘤,包括非小细胞肺癌,黑色素瘤或大肠杆菌癌具有微卫星不稳定的疾病(15)。尽管它们无疑且引人注目会导致某些环境,但肿瘤经常会对它们产生抵抗力。再次,转录调节剂已被证明参与了这种抗抑郁力。 STAT1调节在黑色素瘤中PD-L1的表达和RUNX1-ETO减少CD48,从而减少NK细胞杀伤(16)。此外