抽象背景:尽管使用了广泛使用,但与分布量比(DVR)相比,半定量标准化吸收率(SUVR)可能会偏差。这种偏见可能是由脑血流变化(CBF)部分解释的,并且可能还取决于基础淀粉样蛋白β(Aβ)负担的程度。这项研究旨在将SUVR与DVR进行比较,并评估基本Aβ负担和CBF对SUVR偏置的影响,主要是认知未损害的参与者。根据双重时间窗口协议扫描参与者,其中[18 f]氟甲莫(n = 90)或[18 f] florbetaben(n = 31)。使用了两步简化的参考组织模型的基于验证的基于函数的实现来得出DVR和R 1参数图像,并在注射后90至110分钟计算出SUVR,所有这些都以小脑灰质作为参考组织。首先,使用线性恢复和平淡的altman分析将(区域)SUVR与DVR进行比较。然后,应用广义线性模型来评估(偏置)相对于DVR(偏置)是否可以通过r 1来解释全球皮质平均(GCA),前胎,后扣带回和眶额区域。结果:尽管相关性很高(GCA:R2≥0.85),但观察到SUVR相对于DVR的大量高估和比例偏置。在SUVR或SUVR偏置和R 1之间观察到负相关,尽管不显着。结论:目前的发现表明,SUVR相对于DVR的偏差与潜在的Aβ负担密切相关。Eudract编号:2018-002277-22,注册:25-06-2018。此外,在主要由认知未受损的个体组成的队列中,相对CBF对SUVR中偏差的影响似乎有限。关键字:阿尔茨海默氏病,淀粉样蛋白宠物,脑血流,定量,suvr偏见
今天的网络包括在混合多云环境中运行的应用程序,该应用程序使用裸机,虚拟化以及基于云的工作负载。在这种环境中,关键挑战是改善应用程序和数据安全性,而不会损害敏捷性。Cisco Secure Workload通过使安全性更接近应用程序并根据应用程序行为调整安全姿势来提供全面的工作负载保护。安全工作负载通过使用高级机器学习和行为分析技术来实现此裁缝。它提供了一个现成的解决方案来支持以下安全用例:
druvaistheIndustry'sleadingsaasplatforffordfordataSecurity和Theonlyvendor,以确保由1000万美元保证支持的最常见数据风险进行数据保护。Druva的备份和恢复的创新方法已通过数以千计的数据被保护,保护和利用,并通过数以千计的数据改变了Enterprises.thedruvadatasecurityCloudeliminateStheneedForCostlyHardware,软件和服务通过简单的,AndagileCloud-NativearchItecturethat deliversaunMatchedSecurity,ableabilitoysage andscale andscale.visit andscale.visit druva.com和fackeriat druva.com和faceplolluson linkedin,twitter,twitter和facebook。
使用脑电图信号的认知载荷识别(CLR)近年来经历了显着的进步。但是,当前的载荷范式通常依赖于简单的认知任务,例如算术计算,无法充分复制现实世界情景和缺乏适用性。本研究随着时间的推移探讨了模拟的飞行任务,以更好地反映运行环境并研究多个负载状态的时间动态。36名参与者以执行模拟飞行任务,而低,中和高的认知负荷水平不同。在整个实验中,我们从三个课程,前后静止状态的脑电图数据,主观评分和客观绩效指标中收集了脑电图负载数据。然后,我们采用了几种深卷卷神经网络(CNN)模型,利用RAW EEG数据作为模型输入,以六个分类设计评估认知负载水平。研究的关键发现包括(1)静止状态和疲劳后脑电图数据之间的显着区别; (2)与更复杂的CNN模型相比,浅CNN模型的出色性能; (3)随着任务的进行,CLR的时间动态下降。本文为在不同个体的复杂模拟任务中评估认知状态的潜在基础。
与此相关的是,鉴于该地区65%的公司和组织在PWC的第27个研究中,即2024年,该地区的公司和组织中的65%都在考虑其用法,即2024年(Narayanan&McLiver,2024年),该地区的使用情况变得猖ramp。他们所指的技术进步是采用生成人工智能(Genai)和其他自动化审计工具,这些工具被认为可以提高效率和合规性。尽管它减轻了审计师的负担,但仍在进行有关其对审计工作量和审计质量的实际影响的研究。在菲律宾背景下,审计委员会主席(COA)主席已经旨在以数字方式改变州审计,包括开发符合国际标准的技术驱动会计系统。电子审计,以通过对技术的支持进行审核,从而改善了审计技术和程序(Cordoba,2023年)。借助人工智能和自动化系统的开发,识别数据模式和检测欺诈变得更容易发现。
摘要 - 在Web安全领域,越来越多的转变用于利用机器学习技术用于跨站点脚本(XSS)漏洞检测。这种转变认识到自动化的潜力,即简化识别过程并减少对手动人类分析的依赖。另一种方法涉及安全专业人员积极执行XSS攻击,以精确地指出Web范围内的脆弱区域,从而促进了有针对性的补救。此外,人们对基于机器学习的方法在学术和研究领域中创建XSS有效载荷的兴趣越来越大。在这项研究中,我们介绍了一种新模型,用于生成XSS有效载荷,利用自动回火和生成的AI模型的组合来制作旨在利用潜在脆弱性的恶意脚本。我们对XSS漏洞检测的方法涵盖了前端和后端代码,为组织提供了增强Web应用程序安全性的全面手段。
版权所有©2025,Oracle,Java,MySQL和NetSuite是Oracle和/或其分支机构的注册商标。其他名称可能是其各自所有者的商标。仅出于信息目的提供此文档,并且此处的内容如有更改,恕不另行通知。本文件不保证是没有错误的,也不应遵守任何其他保证或条件,无论是在法律上表明还是暗示,包括对特定目的的适销性或适用性的隐含保证和条件。我们明确违反了对本文档的任何责任,并且本文档直接或间接地构成了任何合同义务。未经我们事先书面许可,就不得以任何形式或任何方式复制或以任何形式的电子或机械方式传输本文档。
摘要 - 监控运动员运动对于提高性能,减轻疲劳并减少受伤的可能性很重要。高级技术,包括计算机视觉和惯性传感器,在对运动特定运动进行分类方面已广泛探索。将自动体育行动标签与运动员监控数据相结合提供了一种有效的方法来增强工作量分析。关于对运动特定运动进行分类的最新研究表明,基于个别运动员的训练和评估方法的趋势,使模型可以捕获每个运动员特有的独特功能。这对于运动员之间技术差异很大的运动特别有益。当前的研究使用受监督的机器学习模型,包括神经网络和支持向量机(SVM),以使用从上下背包惯性测量单元(IMU)传感器中提取的功能来区分跑步表面,即田径轨道,硬砂和软砂。主成分分析(PCA)用于特征选择和降低维度,增强模型效率和解释性。我们的结果表明,与运动员无关的方法相比,运动员依赖的训练方法可大大提高分类性能,从而达到更高的加权平均精度,召回,F1得分和准确性(p <0.05)。