目前,微电子设备中用于芯片到封装连接的最常用材料是铝(Al)焊盘和铜(Cu)线。然而,用于连接这些组件的引线键合工艺可能导致金属间化合物的形成,从而导致电化学腐蚀 [1 – 3] ,以及产生柯肯达尔空洞 [4,5] 。这些问题严重限制了微电子封装的长期可靠性。为了解决半导体行业对材料的成本效益、性能和可靠性的担忧。自 21 世纪初以来,人们定期评估铜焊盘上的铜线键合(Cu-to-Cu 键合)方法,但从未发展成为工业应用。2018 年的综述 [6] 总结了挑战和局限性。铜是一种很有前途的微电子材料,因为它的电导率与铝的电导率之比为 5:3,而且熔点高,大大降低了电迁移 [7]。电沉积铜的固有特性,例如与发芽/生长类型相关的杂质和微观结构演变,会使其对腐蚀敏感。虽然铜的氧化膜提供了一定的防腐蚀保护,但它不像不锈钢等其他金属上形成的钝化膜那样稳定、致密或均匀 [8,9]。铜焊盘的集成对半导体行业提出了重大挑战。实现铜的受控表面状态对于实现与封装的可靠连接至关重要。
参考于2024年12月10日发布的通知2024-113,邀请国家焦点,土著人民和地方社区的代表以及相关组织提名多边机制的成员和观察者提名多边机制的指导者和公平分享的福利,并从数字序列资源中分享福利,包括对基因资金的使用,包括Cali Fund(包括Cali Funi)。我要感谢那些提交提名的人,并邀请那些尚未这样做的人尽快提交提名。我也很高兴通知您,提交提名的截止日期已延长至2025年2月12日。
•关于生物多样性和健康指标(包括人类,动物,植物和环境健康)的示例,有助于评估生物多样性和健康互动主流的进度,特别是考虑到全球行动计划(第16/19条,附件I),第III和第14段。•有关数据源和存储库的信息,可用于支持指标的应用。•与其他组织或倡议有关基于科学的生物多样性和健康指标的制定可能与基于科学的指标有关的努力。
我要衷心感谢所有为本论文项目做出贡献的人。这项研究工作是在里尔电气工程和电力电子实验室 (L2EP, Laboratoire d'Electrotechnique et d'Electronique de Puissance de Lille) 进行的。本论文得到了中国国家留学基金委员会 (CSC) 的资金支持,对此我深表感谢。首先,我要向 Bruno FRANCOIS 先生表示诚挚的谢意,他在这三年里指导了我的工作。我欣赏他对研究工作的态度、他耐心的宝贵指导以及他对研究领域的前瞻性观点。他不仅向我传授知识,还以他的专业精神和道德为榜样教会了我。我还要衷心感谢我的联合导师 Dhaker ABBES 先生,他总是为我提供建设性的建议和科学支持。在他的善良、鼓励和热情下,与他一起工作真的是一种荣幸。我很荣幸 Florence OSSART 女士和 Robin ROCHE 先生同意审阅这篇论文。他们的问题和意见对我准备论文答辩和改进论文非常有帮助。我还要感谢评审团主席 Luce BROTCORNE 女士和评审团成员:François VALLEE 先生、Jérôme BOSCHE 先生、Nouredine HADJSAID 先生和 Vincent DEBUSSCHERE 先生,他们在答辩期间对我的工作进行了深刻的评估。在这三年里,多亏了 L2EP 的同事们,我有机会在非常好的氛围中工作。我衷心感谢他们所有人的热情和在困难时期的倾听。我向闫星宇表示最诚挚的感谢,他在我研究工作的开始阶段以极大的耐心为我提供了无数的科学支持和指导。我要感谢 Xavier CIMETIERE、Kongseng BOUNVILAY、Loïc CHEVALLIER 和 Sylvie DEZODT 在我就读里尔经济学院期间给予我的善意和帮助。非常感谢 Haibo、Reda、Lorraine、Meryeme、Houssein、Emre、Ebrahim(还有其他很多人,我无法在此一一列出名字),感谢他们的鼓励以及我们在一起度过的所有美好时光。我要从心底向我的家人表达无限的感激。如果没有他们在我求学期间无条件的鼓励和支持,这一切都不可能实现。他们以身作则教我如何面对困难,以及只有努力工作才能取得好成绩。最后,我要感谢我的男朋友 Yuliang,他一直很理解、耐心和支持我;他给了我成功开展研究工作的力量;无论欢乐还是悲伤,他总是用他的爱和信任陪在我身边。
多对象跟踪(MOT)是各个领域的关键任务,例如官能分析,监视和自动驾驶汽车。联合检测和追踪范式已经进行了广泛的研究,在训练和部署经典的逐个检测范式的同时,在实现先进的性能的同时,训练和部署更快,更方便。本文通过利用现行的卷积神经网络(CNN)和新型视觉变压器技术局部性来探讨增强MOT系统的可能性。在计算机视觉任务中采用的变压器中有几种延期。虽然变形金刚擅长建模全局信息以进行长时间的嵌入,但缺少学习本地特征的局部机器。这可能导致小物体的疏忽,这可能会导致安全问题。我们将TransTrack MOT系统与localvit所赋予的局部性机制相结合,并发现该位置增强系统在MOT17数据集上比基线TransTrack优于基线转移。
生物多样性保护长期以来一直被认为是一种全球商品,那些最不能力承担成本1的人不应为此支付,其成功依赖于改善当地生计的人2。概述反映了这一信念。,尽管政策和言辞,但几乎没有证据表明保护区对当地社区的福利(尤其是在全球南方)的福利持续了净积极影响。尽管在国家和全球量表3上与受保护区相关的生物多样性和气候结果的奖学金存在相对较少的奖学金。在此问题上,三本全球合成论文4 - 6,提出了不确定的结果,并在证据基础中揭示了方法论弱点:Pullin等。4确定了一系列可能影响的途径,但很少发现严格的证据。 Kandel等。6发现了积极结果的证据,但报道说,更高质量的研究和非洲的研究较少识别积极影响。和Naidoo等。5发现保护区与人类福祉之间存在正相关 - 但是,这种关联对较长的保护区更为负面,作者无法建立因果关系。这些全球综合文件并不排除受益于当地人民的保护区的可能性,但证据的性质排除了公司的结论。缺乏明显的益处是因为许多案例研究表明了负面影响和侵犯人权1、7,并且由于保护区通常位于贫困高的地区8。在30年的时间里,我们自己在马达加斯加的工作表明,保护区可以承担大量的地方成本,他们无法补偿7、9(方框1)。
摘要背景。手术切除是治疗大型或有症状的脑转移瘤 (BM) 患者的标准方法。尽管辅助立体定向放射治疗后局部控制得到改善,但局部失败 (LF) 的风险仍然存在。因此,我们旨在开发并外部验证一种基于治疗前放射组学的预测工具,以识别高 LF 风险的患者。方法。数据来自 BM 切除腔立体定向放射治疗多中心分析 (AURORA) 回顾性研究(训练队列:来自 2 个中心的 253 名患者;外部测试队列:来自 5 个中心的 99 名患者)。从增强 BM(T1-CE MRI 序列)和周围水肿(T2-FLAIR 序列)中提取放射组学特征。比较了不同的放射组学和临床特征组合。最终模型在整个训练队列上进行训练,使用先前通过内部 5 倍交叉验证确定的最佳参数集,并在外部测试集上进行测试。结果。使用放射学和临床特征组合训练的弹性网络回归模型在外部测试中表现最佳,一致性指数 (CI) 为 0.77,优于任何临床模型(最佳 CI:0.70)。该模型在 Kaplan-Meier 分析中有效地根据 LF 风险对患者进行分层(P < .001),并显示出增量的净临床效益。在 24 个月时,我们发现低风险组和高风险组分别有 9% 和 74% 出现 LF。结论。临床和放射学特征的组合比单独的任何临床特征集更能预测无 LF。LF 高风险患者可能会受益于更严格的随访程序或强化治疗。
冷冻电子断层扫描是一个快速发展的领域,用于研究其天然环境中的宏观复合物,并有可能彻底改变我们对蛋白质功能的理解。然而,在低温图中,快速准确地识别颗粒是具有挑战性的,它代表了下游过程中的显着瓶颈,例如亚图平均图。在这里,我们提出了tomocpt(断层式质心预测工具),这是一种基于变压器的解决方案,该解决方案将粒子检测重新探测为使用高斯标签的质心预测任务。我们的方法是建立在Swinunetr架构的基础上的,它表现出了卓越的性能,而二进制标签策略和模板匹配都相比。我们表明,tomocpt通过零弹性推断有效地将新型粒子类型推广到新颖的粒子类型,并且可以通过有限的数据进行微调来显着增强。The efficacy of tomoCPT is validated using three case studies: apoferritin, achieving a resolution of 3.0 A ˚ compared with 3.3 A ˚ using template matching, SARS-CoV-2 spike proteins on cell surfaces, yielding an 18.3 A ˚ resolution map where template matching proved unsuccessful, and rubisco molecules within carboxysomes, reaching 8.0 A ˚ resolution.这些结果证明了Tomocpt处理各种场景的能力,包括密集的环境和膜结合的蛋白质。该工具作为命令行计划的实现,再加上其微调数据要求,使其成为高通量冷冻数据处理工作流的实用解决方案。