摘要:针对受天气异常影响的干旱现象和水动态的高分辨率监测系统有限,这在多方面阻碍了政策决策。本文介绍了高分辨率水监测系统 (WMS) 的可用性,该系统由复杂的多光谱卫星图像、分析和数据科学以及云计算相结合开发而成,用于监测局部尺度上的水位变化和植被水分胁迫。WMS 在 2021 年 1 月至 2021 年 4 月(旱季)期间在湄公河下游地区 (LMR) 案例流域泰国的 Chi River 流域进行了测试。VHI、VCI、TCI 和 NDVI 干旱模拟结果的总体质量与水库和大坝水量数据呈现统计上的正 Pearson 相关性(介于 0.399 和 0.575 之间),但与地下水位数据呈现强烈的负相关性(介于 -0.355 和 -0.504 之间)。应考虑进一步研究和更详细地分析与地下水位变化相关的不同物理环境条件的影响,以增加科学知识和从当地视角了解当地系统变化性质的理解,并在数据贫乏地区使用干旱指数。我们的结果表明,WMS 可以提供局部和情境化地表水变化的定量时空变化作为初步分析。WMS 结果可以为寻找适合当地条件的更好的较小单元管理提供指导,例如水资源管理、灾害风险减少措施(即干旱和洪水)、灌溉实践、土地利用规划和作物管理。现有的 WMS 面向水和农业发展的早期预警、可持续发展目标的进展、数字创新的利用以及提高决策者更早、更准确地监测和预测极端天气事件的能力。
摘要。生物碳泵(BCP)包括将有机碳从表面转移到深海的各种过程。这导致了长期的碳固执。没有BCP,AT-MospherCO 2浓度将高约200 ppm。 这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。 我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。 要得出这些结论,采用了多方面的方法。 它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。 我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。 这些特征位于中尺度涡流之间的额叶区域。 我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。 这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。 这可以改善我们的没有BCP,AT-MospherCO 2浓度将高约200 ppm。这项研究表明,中尺度和子尺度的海洋动力学可能会对颗粒有机物(POM)垂直分布产生重大影响。我们的结果表明,诸如中尺度涡流之间的强烈尺度额叶区域可能导致从混合层深度(MLD)(MLD)向中质区域的重要积累和POM转运。要得出这些结论,采用了多方面的方法。它进行了原位测量和来自配备有水下视觉效果器(UVP6),卫星高度学数据和Lagrangian diag-Nostics的BGC-Argo河口的海洋积雪图像。我们将研究重点放在非洲西南开普盆地17个月长的射流任务中观察到的三个强烈的雪分布特征。这些特征位于中尺度涡流之间的额叶区域。我们的研究表明,由额叶生成驱动的机制诱导的颗粒损伤泵具有通过增加将碳注入到水柱中的深度来增强生物泵的有效性。这项工作还强调了建立针对涡流之间接口区域的重复采样活动的重要性。这可以改善我们的
以及越来越允许的社会文化态度和法律,怀孕期间的大麻使用在2002年(3.4%)和2017年(7%)(7%)之间增加了一倍,尽管有证据表明政府卫生机构的潜在不利后果和灰心(例如外科医生,食品和食品药物管理局外科医生,食品和专业人士)2,3和专业人士(American Colledications of Altive College of Archenecissians)(American College of Archestricistricistricistrics和Gynec)。累积研究将产前大麻暴露(PCE)与儿童期,青春期和成年初期的不良行为结局联系起来(例如,心理病理学增加,认知5-8;另请参见9-11),这表明PCE可能会影响大脑发育。作为大麻构成遍历胎盘12并与胎儿内源性内源性内源性系统的界面,这对神经发育有效(例如,轴突伸长,突触可塑性,突触下修剪)13,有可能通过PCE影响大脑发育的可行分子机制。但是,缺乏研究这种假定的神经系统水平机制14的研究,这是适当评估怀孕期间大麻使用的安全所需的。
在图案化的周期性周期性纳米线上大大增强了Faraday旋转,在二晶型铁石榴石膜上[10]。大多数表面等离子体的研究都集中在金属等贵金属上。但是,这些金属必须与光学活性材料结合使用,以提供血浆的主动控制。特别是,可以用应用于磁性金属杂种系统的磁场来控制磁质量[11,12]。磁光kerr效应(moke)将线性极性光转换为Mo材料中的椭圆极化光。最近,Moke已用于检测磁性纤维中的SOC相关扭矩,例如通过电子旋转角动量和光线之间的相互作用,例如绝缘Yttrium-Iron Garnet(YIG)和金属COFEB以及重金属PT异质结构[13,14]。YIG中的摩克很小,对于近红外波长。用二晶体或稀土元素代替Yttrium可以增强摩克,而磁矩只有很小的变化[15-18]。双掺杂的YIG中的大Mo效应是由原子内轨道偶极子偶极转变在CE的4F和5D状态之间或Inter- inter-
无法控制的树突生长与不均匀的反应环境密切相关。但是,缺乏探测局部电化学环境(LEE)的理解和分析方法。在这里,我们研究了LEE的影响,包括局部离子浓度,电流密度和电势,对金属电镀/剥离动力学和树突最小化的影响。开发了一种新型的原位三维(3D)显微镜,以对3D Zn-MN阳极上的Zn Plating/剥离过程的形态动力学和沉积速率进行成像。使用多平台重建框架创建了高质量的3D形态图。使用原位3D显微镜,我们直接成像反应期间的电极形态变化,并在不同时间点获得了Zn沉积速率图。我们发现反应动力学与Lee和电极形态高度相关。为了进一步量化Lee效应,采用了数字双胞胎技术,使我们能够准确计算电化学环境,例如局部离子浓度,电流密度和电势,这是无法直接从实验中测量的。发现3D电极表面的曲率将确定LEE并显着影响反应动力学。这为我们提供了一种新的策略,可以通过设计和优化电极的3D几何形状来控制Lee,以最大程度地减少树突形成。
DNA修复需要对局部染色质结构进行重组,以促进并修复DNA。研究特定染色质结构域中的DNA双链断裂(DSB)修复已通过使用序列特异性核酸内切酶产生焦油的断裂来帮助。在这里,我们描述了一种结合Killerred的新方法,该方法是一种光敏剂,该光敏剂在暴露于光线时会产生活性氧(ROS),以及CRISPR/CAS9系统的基因组侵蚀性。将Killerr的融合到催化无效的CAS9(DCAS9)产生DCAS9-KR,然后可以将其靶向具有适当的指导RNA的任何所需的基因组区域。用绿光激活DCAS9-KR会产生活性氧的局部增加,从而导致“聚集”的氧化损伤,包括DNA断裂和碱基损伤。迅速(几分钟之内)激活DCAS9-KR会增加γH2AX和KU70/80复合物的募集。重要的是,这种损害在终止光线暴露后的10分钟内修复,表明DCAS9-KR产生的DNA损伤既快速又瞬时。此外,维修是专门通过NHEJ进行的,没有基于HR的机制可检测到的贡献。令人惊讶的是,修复的DNA损伤区域的测序没有发现目标区域中突变或indels的增加,这意味着NHEJ在低水平的条件下具有高忠诚度,损害有限。DCAS9-KR用于产生靶向损伤的方法与使用核酸内切酶相比具有很大的优势,因为可以通过控制光线暴露来控制DNA损伤的持续时间和强度。此外,与进行多个切割修复周期的核核酸酶不同,DCAS9-KR会产生一系列的损害,更类似于在急性暴露于活性氧或环境毒素中急性暴露时造成的损害类型。DCAS9-KR是一个有前途的系统,可在聚类的DNA病变上诱导DNA损伤并测量位点特异性修复动力学。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
摘要:前列腺癌是美国男性中最常见的非乳腺癌。多种机制参与肿瘤发生和向转移的发展。虽然雄激素剥夺疗法仍然是治疗的基石,但不可避免的是对cast割疾病的进展。由于PTEN损失,上皮 - 腔内的MAL过渡途径,同源重组修复以及抗DNA修复途径的机制,PI3K/AKT的异常途径激活,导致转移性castatation抗性耐药的前列腺癌的治疗靶向的机会。本综述着重于进展的机制和关键试验,以评估利用这些途径的药物和组合。关键词:前列腺癌,转移,castration抗性前列腺癌,上皮间质转变,雄激素受体途径抑制剂,多ADP核糖ribose途径抑制剂
相反,即使在包含少数到几百个原子的可数纳米尺寸区域中,LSPR响应也在气相中观察到,对应于纳米簇(NC)(NC),直径低于几纳米。14–19这些发现促使研究基于量子理论计算构建理论框架,以增强我们对这些NC区域光学响应的理解。20–29关于LSPR光学响应在NC中的阈值大小,当在C 60有机底物上制造尺寸分散的单分散Ag NC时,Ag n NC的LSPR响应在9个原子左右出现。两光子光发射(2PPE)光谱阐明了LSPR响应,展示了依赖极化的增强光发性,包括波长依赖性和高扁平形Ag NC在石墨底物上的较大扁平形AG NC的电子弛豫过程。9,10,30但是,在大约50个原子和具有数百个原子的平坦原子的小型NC之间存在尺寸差距。因此,必须使用在底物上单分散的原子化Ag n NC评估光学性质,以揭示用于推进理论处理的过渡区域。在这项研究中,大型Ag NC(n = 70、85和100)在有机C 60底物上均匀地表面毫无成绩,并使用2PPE光谱法评估了其LSPR响应。我们将讨论与周围环境的相关性
手术切除(开放或关节镜下滑膜切除术)是TGCT的标准治疗方法,但据报道局部复发率为16% – 47%(4,5)。此外,TGCT的发病机制归因于集落刺激因子1(CSF-1)的过度表达,这是由于CSF1基因与t(1,2)易位中的VI型胶原α3启动子融合导致的CSF-1过度表达(6)。因此,针对CSF-1 /集落刺激因子1受体(CSF-1R)轴的全身疗法已经开发出来(7)。培昔达替尼是美国首个获批的用于治疗TGCT患者的全身疗法(8)。据报道,该药物的反应率良好,但也需要进行包括肝毒性在内的风险评估(9)。相比之下,其他治疗药物也已提出,在治疗