术语 定义 ADSE 机场地面探测设备 AID 自动识别 AIS 自动识别系统 AM 调幅 附录 17 《无线电规则》附录 17:水上移动业务高频频段的频率和信道安排 附录 18 《无线电规则》附录 18:甚高频水上移动频段发射频率表 附录 30 《无线电规则》附录 30:11.7-12.2 GHz(3 区)、11.7-12.5 GHz(1 区)和 12.2-12.7 GHz(2 区)频段卫星广播业务所有业务及相关规划和清单的规定 附录 30A 《无线电规则》附录 30A:卫星广播业务馈线链路的规定及相关规划和清单(1 区 11.7-12.5 GHz,12.2-12.7 GHz,在 2 区为 11.7-12.2 GHz,在 1 区和 3 区为 14.5-14.8 GHz 和 17.3-18.1 GHz 频段,在 2 区为 17.3-17.8 GHz 频段 附录 30B 《无线电规则》附录 30B:4 500-4 800 MHz、6 725-7 025 MHz、10.70-10.95 GHz、11.20-11.45 GHz 和 12.75-13.25 GHz 频段的卫星固定业务的规定和相关规划 附录 4 《无线电规则》附录 4:用于应用第 III 章程序的综合清单和特性表格 附录 5 《无线电规则》附录 5:确定将与之进行协调或达成协议的主管部门根据第 9 条的规定寻求的利益 第 12 条 《无线电规则》第 12 条:对分配给广播业务的 5 900 kHz 至 26 100 kHz 之间的高频段进行季节性规划 第 23 条 《无线电规则》第 23 条:广播业务 第 26 条 《无线电规则》第 26 条:标准频率和时间信号业务 第 31 条 《无线电规则》第 31 条:全球海上遇险和安全系统(GMDSS)的频率 第 5 条 《无线电规则》第 5 条:频率分配 BFWA 宽带固定无线接入 BSS 卫星广播业务 COSPAS 遇险船舶搜寻空间系统 DME 测距设备 DSC 数字选择呼叫 EIRP 等效同位素辐射功率 - 供给天线的功率与相对于全向天线在给定方向上的天线增益的乘积(绝对增益或全向增益) EESS 地球探测卫星业务 EIRP 有效全向辐射功率 ENG 电子新闻采集 EPIRB 紧急位置指示无线电信标 FM 频率调制 FSS 固定-卫星服务
约克大学人工智能哲学 AP/PHIL/COGS 3750 3.00(Lect 01)2021 年冬季课程类型:讲座 | 星期四,下午 2:30(EST),3 小时 | 地点:Zoom | Cat# M73K01(AP COGS)/ W55M01(AP PHIL)重要日期:1 月 11 日(学期开始)、1 月 14 日(第一堂课)、2 月 13-19 日(冬季阅读周)、3 月 12 日(不获得成绩的最后一天退课)、4 月 8 日(最后一堂课)、4 月 12 日(冬季课程结束)、4 月 13 日(本学期提交作业的最后一天)、4 月 14-28 日(冬季考试期)课程讲师:Michael Barkasi(barkasi@yorku.ca)办公时间:通过 Zoom,星期四,下午 1:30-2:30(EST);可能的其他时间。需要预约(请发送电子邮件)。先决条件:AP/PHIL/COGS 2160 3.00 或 AP/PHIL 2240 3.00 之一 参加课程的技术要求:eClass 访问和 Zoom。强烈建议学生参加周四的 Zoom 讲座并积极参与麦克风和视频,但这不是强制性的。(如果愿意,参加 Zoom 会议的学生可以关闭摄像头并将麦克风静音。) 讲座将被录制并通过 eClass 提供给那些不能参加的学生。(与学生的讨论时间不会被记录,因此不参加 Zoom 会议的学生将错过课堂的这一部分。) 以下是一些有用的学生计算信息、资源和帮助链接:Moodle 学生指南 | Zoom@YorkU 最佳实践 | Zoom@YorkU 用户参考指南 | 学生计算网站 | 约克大学电子学习学生指南 时间和地点:这是一门远程授课的课程。每周四将在预定的 2:30-5:30pm(EST)时间段通过 Zoom 进行讲座和讨论。重复 Zoom 会议的链接将发布到 eClass,为无法现场参加的人提供讲座(但不提供讨论)的录音。虽然不需要参加正常的 Zoom 会议,但你需要在第 8 周(3 月 4 日)星期四下午 2:30-5:30(EST)时间段参加期中考试;你还需要在期末考试期间分配给课程的时间段参加期末考试。请注意,这是一门依赖远程教学的课程。校园内不会有面对面的互动或活动。虚拟办公时间:通过 Zoom,星期四,下午 1:30-2:30(EST),或我们双方同意的时间。无论哪种情况都需要预约(请发送电子邮件设置预约并获取 Zoom 链接)。如果您有任何问题、意见或疑虑,请随时通过电子邮件联系我(课程主任)。
摘要................................................................................................................................iv
摘要................................................................................................................................iv
fi g u r e 2快速结构的地图(k = 6)落基山的结果(O.C.Canadensis)和内华达山脉(O.C.sierrae)使用HD卵子阵列进行基因分型的大角羊种群。天然种群的近似分布是棕色多边形;重新引入的人群是黑色多边形。每个人群旁边旁边的牛群级别快结构组分配的饼图。这项研究中的落基山绵羊绵羊种群之间的所有已知的转运事件均显示为箭头。箭头通常指向接收者群体,并不代表确切的释放位置。箭头厚度与易位数量成正比;箭头颜色对应于源总数的主要快结构组分配。大约比格霍恩绵羊的范围,包括本研究中的人群,在爱达荷州,怀俄明州和蒙大拿州的灰色多边形中显示(蒙大拿州鱼,野生动植物,&Parks,2008; Thomas,2019; Wyoming Game&Fish Game&Fish Game&Fish Department,2012年)。Beartooth-Absaroka的狩猎单位边界被标记并截断为大角羊范围。状态边界用灰色概述的虚线指定;研究区域的国家公园边界由虚线指定
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
人物与地点 政策 DM15 遗产资产保护 49 政策 DM16 遗产资产环境的保护与改善 51 政策 DM17 考古遗迹保护与考古工作 52 政策 DM18 建筑记录 54 政策 DM19 纽伯恩福特 1640 战场 54 政策 DM20 设计 55 政策 DM21 店面与标牌 58 政策 DM22 临时裹尸布广告 59 政策 DM23 住宅便利设施 60 政策 DM24 开发对环境与健康的影响 62 政策 DM25 飞机安全 64 政策 DM26 洪水风险与水资源管理 65 政策 DM27 保护与改善绿色基础设施 69 政策 DM28 树木与景观 72 政策 DM29 保护与改善地质多样性、生物多样性与栖息地 73 政策DM30 保护和提供开放空间、体育和娱乐建筑及土地 77 政策 DM31 绿化带开发 84
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 由 此预印本的版权持有者(此版本于 2020 年 5 月 27 日发布。 ; https://doi.org/10.1101/2020.05.26.117390 doi: bioRxiv preprint
着丝粒提出了一个进化悖论:功能高度保守,但序列和结构却迅速变化。然而,在没有损伤的情况下,着丝粒的位置通常在一个物种内是保守的。我们在此报告,致病酵母菌种近平滑假丝酵母的分离株在其八条染色体中的两条染色体上表现出着丝粒位置的种内多态性。它的旧着丝粒具有反向重复 (IR) 结构,而其新着丝粒没有明显的结构特征,但位于旧位置的 30 kb 以内。因此,着丝粒可以自然地从一个染色体位置移动到另一个染色体位置,似乎是自发的,并且在 DNA 序列没有任何显著变化的情况下。我们的观察结果与所有着丝粒都是由基因决定的模型相一致,例如由短或长 IR 的存在或形成十字形的能力决定。我们还发现着丝粒已成为 C. parapsilosis 进化枝中基因组重排的热点。
成簇的规律间隔短回文重复序列 (CRISPR) - CRISPR 相关蛋白 (Cas) 技术已应用于植物育种,主要用于改良单个或多个性状的基因 1 – 4 。本文我们表明,这项技术还可用于重组植物染色体。利用来自金黄色葡萄球菌 5 的 Cas9 核酸酶,我们能够在拟南芥中诱导异源染色体之间 Mbp 范围内的相互易位。值得注意的是,在没有经典的非同源末端连接途径的情况下,易位频率大约高出五倍。利用 Cas9 核酸酶的卵细胞特异性表达和连续的批量筛选,我们能够分离可遗传事件并建立易位纯合的品系,单个品系的频率高达 2.5%。通过分子和细胞学分析,我们证实了在拟南芥 1 号和 2 号染色体之间以及 1 号和 5 号染色体之间获得的染色体臂交换是保守的和相互的。诱导染色体易位可以有针对性地模拟基因组进化或染色体修改,固定或打破不同染色体上性状之间的遗传连锁。植物基因组的受控重组有可能改变植物育种。鉴于养活快速增长的人口的挑战以及气候变化对农业的影响,对新作物品种的需求日益增加。随着传统育种已达到极限,使用基因组编辑工具对作物进行理想性状改造正成为主要关注点 6 。应用 CRISPR-Cas 系统定向诱导位点特异性双链断裂 (DSB) 使得基因编辑既可用于植物基础研究,也可用于农业性状的产生和改良 7 。在包括植物在内的多细胞真核生物中,DSB 的修复主要由两种途径介导,非同源末端连接 (NHEJ) 和同源重组 8 。通过易错的 NHEJ 进行的修复通常与断裂位点处的序列信息丢失有关,而同源重组主要导致无错修复 9 。在植物中,NHEJ 是体细胞组织中普遍的修复途径。NHEJ 可进一步细分为经典 NHEJ (cNHEJ) 和替代 NHEJ (aNHEJ) 途径 10 。在 cNHEJ 的情况下,断端直接重新连接,有时会导致断裂位点处的小插入或缺失 (indel)。aNHEJ 利用靠近断裂位点的微同源性并依赖于聚合酶 theta,导致与插入部分相关的微同源性之间的序列信息缺失 11,12 。一次诱导多个 DSB 可以通过 NHEJ 将不相关的断裂末端连接起来,从而导致基因组中复杂的重排。