pCas-Guide-scramble(SKU GE100003) AAVS1 供体载体(SKU GE100024、GE100035、GE100046、GE100048) 预先设计的 AAVS1 供体对照,具有不同的转基因和耐药标记组合(SKU GE100037、GE100039、GE100026、GE100063、GE100064、GE100065、GE100066、GE100068、GE100069、GE100070、GE100071、GE100072、GE100073) AAVS1 转基因敲入载体试剂盒(puro)(SKU GE100027) AAVS1 转基因敲入载体试剂盒(BSD)(SKU GE100036) AAVS1 转基因敲入载体试剂盒(EF1a-puro)(SKU GE100046) AAVS1 转基因敲入载体试剂盒(EF1a-BSD)(SKU GE100048) AAVS1 Cas9 插入载体试剂盒,Puro(SKU GE100038)和 BSD(SKU GE100040)
许多作者考虑了用于分析来自杂种种群数据的设计(例如Neimann-Sprensen和Robertson,1961年; Soller和Genizi,1978年; Geldermann等,1985; Weller等,1990)。这些方法的缺点是他们一次使用来自单个MARIRW的信息。没有标记将具有统一性的杂合性,因此对于任何给定的标记,有些父亲都会是纯合的,因此是非信息的。这会浪费信息,并在QTL的估计位置中引入偏差可能会有更大的问题。此外,提出的最小二乘方法不能单独估计任何检测到的QTL的位置和效果。最大似然(ML)方法(Weller,1986; Knott and Haley,1992a)可以估计这两种效果,但是通常仅使用单个标记(Weller,1986; Knott; Knott and Haley,1992a and B)估计,位置与标记相对(I.E.可以是它的任何一侧)。
早期疫病(EB),由linariae(Neerg。)(SYN。A。tomatophila)Simmons是一种影响世界各地的西红柿(Solanum lycopersicum L.)的疾病,具有巨大的经济影响。本研究的目的是绘制与西红柿中EB耐药性相关的定量性状基因座(QTL)。F 2和F 2:3的映射种群由174条线组成,这些群体在2011年的自然条件下评估了NC 1celbr(抗性)×Fla。7775(易感性),并通过人工接种在2015年的温室中进行了自然条件评估。总共使用了375个具有特定PCR(KASP)测定法的基因分型父母和F 2种群的分析。表型数据的广泛遗传力估计为2011年和2015年的疾病评估分别为28.3%和25.3%。QTL分析显示,六个QTL与染色体2、8和11(LOD 4.0至9.1)上的EB抗性相关,解释了3.8至21.0%的表型变异。这些结果表明,NC 1celbr中EB耐药性的遗传控制是多基因的。这项研究可能有助于将EB抗性QTL和标记辅助选择(MAS)进一步绘制,以将EB耐药基因转移到精英番茄品种中,包括扩大番茄中EB耐药性的遗传多样性。
微分同胚图像配准能够提供平滑的变换和拓扑保存,在许多医学图像分析任务中是必需的。传统方法对可接受的变换空间施加某些建模约束,并使用优化来寻找两幅图像之间的最佳变换。指定正确的可接受的变换空间具有挑战性:如果空间过于严格,配准质量可能会很差,而如果空间过于笼统,则优化可能难以解决。最近基于学习的方法利用深度神经网络直接学习变换,实现了快速推理,但由于难以捕捉微小的局部变形和泛化能力,在准确性方面面临挑战。在这里,我们提出了一种新的基于优化的方法,称为 DNVF(带神经速度场的微分同胚图像配准),该方法利用深度神经网络来建模可接受的变换空间。具有正弦激活函数的多层感知器 (MLP) 用于表示连续速度场,并为空间中的每个点分配一个速度矢量,从而提供对复杂变形进行建模的灵活性以及优化的便利性。此外,我们提出了一种级联图像配准框架 (Cas-DNVF),结合了优化和基于学习的方法的优点,其中训练完全卷积神经网络 (FCN) 来预测初始变形,然后使用 DNVF 进行进一步细化。在两个大型 3D MR 脑部扫描数据集上进行的实验表明,我们提出的方法明显优于最先进的配准方法。
1 de toulouse大学,Insa-CNRS-UPS,LPCNO,135 AV。Rangueil, 31077 Toulouse, France 2 Centre d'Elaboration des Matériaux et d'Etudes Structurales (CEMES), UPR8011 CNRS, Université Toulouse 3, 31055 Toulouse, France E-mail: lassagne@insa-toulouse.fr Graphene-based Hall effect magnetic field sensors hold great promise for the development of ultrasensitive magnetometers with very low power 消耗。经常使用所谓的两通道模型对其性能进行分析,其中简单地添加了电子和孔电导率。不幸的是,该模型无法捕获所有传感器的特性,尤其是磁场灵敏度的偏置电流依赖性。在这里,我们提出了一个高级模型,该模型对基于石墨烯的霍尔传感器如何运行并证明其定量评估其性能的能力有深入的了解。首先,我们根据石墨烯的不同品质报告了传感器的制造,最好的设备可实现高达5000ω/𝑇的磁场敏感性,表现优于最佳的硅和基于窄间隙的半导体传感器。然后,我们使用所提出的数值模型详细检查了它们的性能,该模型将Boltzmann的形式主义与电子和孔的不同Fermi水平结合在一起,以及一种引入底物诱导的电子孔 - 水坑的新方法。重要的是,磁场灵敏度对偏置电流,无序,底物和霍尔杆几何形状的依赖性首次定量再现。此外,该模型强调,由于电流堆积物的出现和霍尔酒吧边缘附近的损耗区域的出现,具有电荷载体扩散长度宽度的设备受到偏置电流的影响很大,比常规HALL效应预测大得多。这些区域的形成诱导了横向扩散荷载载体通量,当Hall电场取消在Ambipolarememime中,能够抵消由Lorentz力诱导的载体。最后,我们讨论了Fermi Velocity Engineering如何增强传感器性能,为将来的超敏感石墨烯效果传感器铺平了道路。关键字:石墨烯,石墨烯霍尔传感器,磁场传感器,霍尔效应,玻尔兹曼形式主义,费米速度重新归一化,电子孔布丁
Junhao Wen,Ilya M Nasrallah,Ahmed Abdulkadir,Theodore D Satterthwaite,Zhijian Yang等。基因组基因座影响人脑结构协方差的模式。美国科学学院的会议记录,2023,120(52),10.1073/pnas.2300842120。hal-04362321
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
C3 194.0 415.7 ± 17.6 352.4 ± 14.2 ± 0.4 14.5 ± 3.8 C4 789.3 735.8 ± 41.6 317.0 ± 16.5 ± 0.4 11 840.4 972.3 ± 39.2 969.4 ± 36.1 3.6 ± 0.6 28.4 ± 4.1 C7 574.3 1104.1 ± 44.3 334.4±13.2 19.4±C9 188.4 228.8±9.9 104.0±4.4 32.5±3.4 35.4 35.4±4.5 C10 1782.5 5019.3±244.6 1636.6 1636.6±81.5±81.5±0.5±0.5±0.5 76±9.9.9.9.9 0.8 C12 505.4 C12 505.4 69.7.7.7.7±694.7±694.7±694.7±694.7±69.7±69.4±69.7±69.7±69.7±69.7±69.7±69.7±69.4±69.7±69.4±69.4应该±0.4 7.7±1.1 C13 4155.5 1612.4±84.5 449.2±23.6.6.6±1.0 C14 2080.2 1732 12.5±1.9 315C3 194.0 415.7 ± 17.6 352.4 ± 14.2 ± 0.4 14.5 ± 3.8 C4 789.3 735.8 ± 41.6 317.0 ± 16.5 ± 0.4 11 840.4 972.3 ± 39.2 969.4 ± 36.1 3.6 ± 0.6 28.4 ± 4.1 C7 574.3 1104.1 ± 44.3 334.4±13.2 19.4±C9 188.4 228.8±9.9 104.0±4.4 32.5±3.4 35.4 35.4±4.5 C10 1782.5 5019.3±244.6 1636.6 1636.6±81.5±81.5±0.5±0.5±0.5 76±9.9.9.9.9 0.8 C12 505.4 C12 505.4 69.7.7.7.7±694.7±694.7±694.7±694.7±69.7±69.4±69.7±69.7±69.7±69.7±69.7±69.7±69.4±69.7±69.4±69.4应该±0.4 7.7±1.1 C13 4155.5 1612.4±84.5 449.2±23.6.6.6±1.0 C14 2080.2 1732 12.5±1.9 315
在GWAS基因座附近发现的从头变体的功能注释,有或没有left裂的嘴唇sarah W. Curtis 1,Laura E. Cook 3,Kitt Paraiso 3,Kitt Paraiso 3,Axel Visel 2,3,Axin L. Cotney 4,Justne L. Cotney 4,Justney 5 J. Leslie-Clarkson 1 * 1-人类遗传学系,埃默里大学医学院,亚特兰大,佐治亚州亚特兰大,30322 2-美国能源部联合基因组研究所,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州伯克利,3-环境基因组和系统生物学部,加利福尼亚州伯克利,加利福尼亚州伯克利。4- - 费城儿童医院,宾夕法尼亚州费城儿童医院研究所,19104年5月5日 - 爱荷华州爱荷华大学儿科学系,爱荷华州,爱荷华州,52242 6-流行病学系,约翰·霍普金斯·布卢姆伯格公共卫生部,巴尔蒂群岛,哥伦比亚省,约翰斯·霍普金斯·布卢姆伯格(Johns Hopkins Bloomberg)宾夕法尼亚州匹兹堡匹兹堡大学生物学,15261 8-匹兹堡大学人类遗传学系,宾夕法尼亚州匹兹堡,匹兹堡,15621 9-匹兹堡生物统计学和健康数据科学系,匹兹堡,匹兹堡,匹兹堡,宾夕法尼亚大学,15261年,宾夕法尼亚大学15261年。颅面出生缺陷,影响700分的分娩,有强大的遗传基础,家庭内部复发风险很高。 因此,我们从1,409个三重点重新分析了现有的DNV数据集,其OFC经过了已知的OFC相关基因座的靶向测序。 然后,我们通过在人类颅面发育过程中从预测的表观遗传功能数据集中提供了这些DNV的注释。- 费城儿童医院,宾夕法尼亚州费城儿童医院研究所,19104年5月5日 - 爱荷华州爱荷华大学儿科学系,爱荷华州,爱荷华州,52242 6-流行病学系,约翰·霍普金斯·布卢姆伯格公共卫生部,巴尔蒂群岛,哥伦比亚省,约翰斯·霍普金斯·布卢姆伯格(Johns Hopkins Bloomberg)宾夕法尼亚州匹兹堡匹兹堡大学生物学,15261 8-匹兹堡大学人类遗传学系,宾夕法尼亚州匹兹堡,匹兹堡,15621 9-匹兹堡生物统计学和健康数据科学系,匹兹堡,匹兹堡,匹兹堡,宾夕法尼亚大学,15261年,宾夕法尼亚大学15261年。颅面出生缺陷,影响700分的分娩,有强大的遗传基础,家庭内部复发风险很高。因此,我们从1,409个三重点重新分析了现有的DNV数据集,其OFC经过了已知的OFC相关基因座的靶向测序。然后,我们通过在人类颅面发育过程中从预测的表观遗传功能数据集中提供了这些DNV的注释。尽管以前的许多研究都将常见的,非编码的遗传基因座与OFC相关联,但在OFC案例中,先前对从头变异的研究(DNV)的研究重点是编码可能对蛋白质结构产生功能影响的变体,并且对非编码DNV对OFC形成的贡献也没有被忽略,并且已被忽略了。在预测的增强子或启动子区域内。两个DNV落在相同的增强子区域(HS1617)之内,这超出了偶然性的预期(p = 0.0017)。预计由这些DNV引起的序列变化将创建在转录因子PAX6和ZBTB7A的参考序列中未见的结合位点,并破坏了STAT1和STAT3的结合位点。该增强子区域与HHAT,SERTAD4和IRF6在同一拓扑相关的域内,所有这些区域都参与颅面发育。这三个基因在人神经rest细胞中高度表达。HHAT和IRF6的基因敲除小鼠具有异常的胚胎发育,包括left裂,IRF6及其周围的变体与人类OFC的非综合症和综合综合症形式有关。综上所述,这表明非编码DNV有助于OFC的遗传结构,在增强子区域中,OFC Trios的DNV负担在已知的OFC相关基因附近。总的来说,这增加了我们对OFC形成基础的遗传机制的理解。
摘要对瓦罗阿击蛋白的饲养源细胞的摘要是一种特征,最近吸引了对蜜蜂育种的兴趣,以选择耐螨的Apis mellifera菌落。为了研究该性状的遗传结构,我们评估了一个样本。Mellifera Mellifera菌落(n = 155)来自瑞士和法国,并进行了全基因组关联研究,使用每个菌落500名工人进行下一代测序。结果表明,两个QTL显着(p <0.05),与destructor -destructor摄取的育雏细胞的回旋相关。最佳相关的QTL位于以前发现与修饰行为相关的区域的5号染色体上,这是对V. destructor的抗性性状,在a中。Mellifera和Apis Cerana。第二最佳相关的QTL位于DSCAM基因内含子中的4号染色体上,该基因与神经元接线有关。先前的研究表明,与神经元接线有关的基因与回顾和Varroa敏感卫生有关。因此,我们的研究证实了基因区域对5染色体在社会免疫中的作用,并同时提供了对蜂蜜蜜蜂常见螨抗性性状之间遗传相互作用的新见解。