在不同遗传背景中的遗传扰动会导致物种内的一系列表型。这些表型差异可能是遗传背景与扰动之间相互作用的结果。以前,我们报道说,秀丽隐杆线虫发育控制的重要参与者GLD-1的扰动释放了影响不同遗传背景的适应性的隐性遗传变异(CGV)。在这里,我们研究了转录体系结构的变化。我们发现了414个基因,具有顺式表达定量性状基因座(EQTL)和991个基因,具有跨eqTL,这些基因在GLD-1 RNAI处理中特异性发现。总共检测到16个EQTL热点,其中7个仅在GLD-1 RNAi处理中发现。对这7个热点的富集分析表明,受调节的基因与神经元和咽部有关。 此外,我们在GLD-1 RNAi处理的线虫中发现了加速的Tran术语衰老的证据。 总体而言,我们的结果表明,研究CGV会导致发现隐藏的多态性调节剂。对这7个热点的富集分析表明,受调节的基因与神经元和咽部有关。此外,我们在GLD-1 RNAi处理的线虫中发现了加速的Tran术语衰老的证据。总体而言,我们的结果表明,研究CGV会导致发现隐藏的多态性调节剂。
A novel quantitative trait locus implicates Msh3 in the propensity for genome-wide short tandem repeat expansions in mice Mikhail O. Maksimov 1,2* , Cynthia Wu 3* , David G. Ashbrook 4 , Flavia Villani 4 , Vincenza Colonna 4,5 , Nima Mousavi 6 , Nichole Ma 1 , Lu Lu 4 , Jonathan K. Pritchard 7,8,Alon Goren 1,9,Robert W. Williams 4,Abraham A. Palmer 9,10,Melissa Pymrek 1,2,9,11†1加利福尼亚大学加利福尼亚大学圣地亚哥大学医学系,加利福尼亚州圣地亚哥分校,加利福尼亚州2 2遗传学,基因组学和信息学,田纳西大学健康科学中心,孟菲斯,田纳西州5 5遗传学和生物物理学研究所,国家研究委员会,那不勒斯国家研究委员会,80111,意大利6号电气和计算机工程系,加利福尼亚州圣地亚哥大学,圣地亚哥分校,拉荷拉大学,拉荷拉大学,加利福尼亚州,加利福尼亚州,遗传学。加利福尼亚州加利福尼亚大学圣地亚哥分校,加利福尼亚州圣地亚哥分校,加利福尼亚大学圣地亚哥分校,加利福尼亚州圣地亚哥分校,加利福尼亚州11月11日生物医学信息学系,加利福尼亚州加州圣地亚哥分校,加利福尼亚州圣地亚哥分校 *这些作者为这项工作做出了同样的贡献。†信函应发给mgymrek@ucsd.edu。
考虑到纳米孔测序的~5%测序错误(主要是插入和缺失)和供体片段的部分截断整合,我们在分配数据时基于预期的完美插入大小将间隔扩大±20%。然后,我们用正向骨架插入(Bf)、反向骨架插入(Br)、正向F8盒式插入(F8f)和反向F8盒式插入(F8r)的grepseqs分析了9个数据集特定长度范围内的数据。最后,我们计算出F8盒式插入和骨架整合的比例,分别为40.24%和44.47%。有趣的是,完全供体整合占总插入事件的14.16%,而其余的插入涉及两个相同的片段和三个片段的整合(图5B)。
摘要:无角凯尔特(Pc)突变位点是一种遗传学上简单的单突变,是利用基因编辑技术培育无角牛的最佳选择。但Pc位点调控角芽发育的机制尚不明确,因此利用基因编辑、体细胞核移植和胚胎移植的方法获得无角荷斯坦胎牛(妊娠期90天),以纯合Pc插入的胎牛(基因编辑荷斯坦胎牛,EH)和野生型90天荷斯坦胎牛(WH)作为对照。苏木精-伊红(HE)染色结果显示,与WH相比,EH角芽没有白色角化突起或空泡状角质形成细胞,真皮组织下没有粗大的神经束。DNA测序结果显示,Pc位点以纯合方式插入胎牛基因组中。通过转录组测序分析共鉴定出791个差异表达基因。差异表达基因富集分析与蛋白相互作用分析结果显示,Pc插入后存在丰富的基因改变,与粘附分子调控、肌动蛋白表达、细胞骨架变形以及角蛋白表达与角化有关。同时值得注意的是,结果中还包含多个已报道与角性状发育相关的基因,如RXFP2、TWIST1等,本研究首次鉴定出这些改变并进行了总结。研究结果提示,Pc突变位点可能抑制神经嵴细胞EMT生成和角蛋白表达,导致神经嵴细胞不能迁移和角芽组织不能角化,从而调控无角表型的产生。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2021年6月16日。 https://doi.org/10.1101/2021.04.26.441431 doi:biorxiv preprint
囊性纤维化(CF)是一种由CF跨膜诱导调节剂(CFTR)蛋白的产生和/或功能受损引起的单基因疾病。尽管我们先前已经显示出对最常见的致病突变的校正,但整个CF基因中还有许多其他致病突变。精确插入CFTR cDNA的自体气道干细胞疗法,无论因果突变如何,几乎所有CF的CFTR基因座都可以为几乎所有CF papentent摄取耐用的治疗方法。在这里,我们使用CRISPR-CAS9和两个与CFTR cDNA的两半相关的病毒(AAVS),在上部机构干细胞(UABCS)和人类bronthial Checepselial Chial Chirial Chips(Hymanthial Chialical Clonial Clonial Clonial Clonial Chilial Chialial Clial Cyselial Chillial Cyselial Chirial Chirial Chillial Clyeclial)(Huncseps)(TCD19)和截断的CD19(TCD19),顺序插入完整的CFTR cDNA(TCD19)。从11个不同的CF供体中获得60%至80%的TCD19 + UABC和HBEC,并从11个不同的CF供体中获得60% - 80%的TCD19 + UABC和HBEC。在空气界面上培养的分化上皮单层显示出恢复的CFTR函数,在非CF对照中占CFTR函数的70%。因此,我们的研究可以为几乎所有CF患者(包括无法使用最近批准的调节剂疗法治疗的患者)开发治疗。
核苷酸结合结构域 - 富含亮氨酸的重复型免疫受体(NLR)通过效应蛋白的细胞内检测来保护植物免受致病性微生物的影响。然而,这是有代价的,因为NLR还可以在与外国等位基因的遗传相互作用中引起有害的自身免疫性。当将独立进化的基因组组合在杂质内或杂交中时,或者是通过诱变或转基因引入外来围栏时,可能会发生这种情况。大多数自身免疫性诱导的NLR都在高度可变的NLR基因簇中编码,没有已知的免疫功能,这些功能被称为自身免疫性风险基因座。NLR是否与在自然病原体抗性中运行的传感器NLR以及在自身免疫性中激活NLR的风险NLR是否有所不同。在这里,我们分析了拟南芥中主要的自身免疫热点的危险混合风险基因座。通过基因编辑和异源表达,我们表明,在三种独立的自身免疫性病例中,单个基因DM2H是自身免疫性诱导的必要且有足够的因素,可用于登录Landsberg Erecta。我们关注的是由EDS1-叶叶溶液蛋白(YFP)NLS融合蛋白引起的自身免疫性,以功能表征DM2H并确定激活免疫受体的EDS1- YFP NLS的特征。我们的数据表明,在这种情况下,在这种情况下,eDS1-YFP NLS的自身免疫性诱导性能的风险NLR的功能与传感器NLR的功能无关,与蛋白质作为免疫调节剂的功能无关。我们建议至少在某些情况下,自身免疫性可能是由外国等位基因与偶然匹配风险NLR的虚假,随机相互作用引起的。
1医学系2,美国加利福尼亚州加利福尼亚州加利福尼亚大学加利福尼亚大学加利福尼亚州加利福尼亚州92093的计算机科学与工程系; 3加利福尼亚州加利福尼亚大学加利福尼亚州加利福尼亚州加利福尼亚州加利福尼亚州92093,加利福尼亚大学圣地亚哥分校生物信息学和系统生物学计划; 4田纳西大学健康科学中心,田纳西州田纳西州38163,田纳西大学健康科学中心遗传学,基因组学和信息学系; 5意大利的那不勒斯80111国家研究委员会遗传与生物物理学研究所; 6美国加利福尼亚州圣地亚哥分校电气与计算机工程系,美国加利福尼亚州92093,美国; 7美国斯坦福大学斯坦福大学的生物学系8遗传学系94305; 9美国加利福尼亚州加州圣地亚哥分校基因组医学研究所,美国加利福尼亚州92093,美国; 10精神病学系,11个生物医学信息学系医学系,加利福尼亚州圣地亚哥分校,加利福尼亚州,加利福尼亚州92093,美国1医学系2,美国加利福尼亚州加利福尼亚州加利福尼亚大学加利福尼亚大学加利福尼亚州加利福尼亚州92093的计算机科学与工程系; 3加利福尼亚州加利福尼亚大学加利福尼亚州加利福尼亚州加利福尼亚州加利福尼亚州92093,加利福尼亚大学圣地亚哥分校生物信息学和系统生物学计划; 4田纳西大学健康科学中心,田纳西州田纳西州38163,田纳西大学健康科学中心遗传学,基因组学和信息学系; 5意大利的那不勒斯80111国家研究委员会遗传与生物物理学研究所; 6美国加利福尼亚州圣地亚哥分校电气与计算机工程系,美国加利福尼亚州92093,美国; 7美国斯坦福大学斯坦福大学的生物学系8遗传学系94305; 9美国加利福尼亚州加州圣地亚哥分校基因组医学研究所,美国加利福尼亚州92093,美国; 10精神病学系,11个生物医学信息学系医学系,加利福尼亚州圣地亚哥分校,加利福尼亚州,加利福尼亚州92093,美国
fi g u r e 1(a)在不同区域的囊肿囊capsella bursa-pastoris等位基因频率(locus aat1)。(b)不同区域中的C. bursa-pastoris的等位基因频率(locus aat2)。(c)不同区域中的C. bursa-pastoris的等位基因频率(locus aat3)。(d)不同区域中的C. bursa-pastoris等位基因频率(locus gdh2)。(e)不同地区的Capsella bursa-pastoris等位基因频率(locus lap3).AFR,非洲;澳大利亚,大洋洲; BRT,不列颠群岛;加利福尼亚州加州;东欧EEU;伊比,伊比利亚半岛; M + SA,中和南美; M +我们,中欧和西欧; Med,环境区域;北美,除加利福尼亚以外。黑点:样品位置,灰色区域:基于EW(CDH,2018)汇编的数据的C. bursa-pastoris分布
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 10 月 4 日发布。;https://doi.org/10.1101/2023.10.04.560902 doi:bioRxiv preprint