背景:儿童脑肿瘤是儿童癌症死亡的主要原因,代表多种疾病和分子亚型。本研究旨在评估一种快速免疫组织化学测试组合,以协助恶性肿瘤复发时的治疗方法选择。方法:经 IRB 批准和适当的知情同意,我们进行了一项单机构前瞻性临床试验,研究选定的激酶抑制剂疗法。对肿瘤组织进行实验室开发的免疫组织化学测试组合,建议使用四种小分子抑制剂中的一种与替莫唑胺和依托泊苷组成的口服化疗联合治疗。结果:所有 20 名受试者被分配到依维莫司 (n = 4)、厄洛替尼 (n = 6) 或达沙替尼 (n = 10) 组;90% (18/20) 在预先指定的 14 天可行性时间段内完成。研究中只有 2 名受试者选择了治疗,8 名受试者根据检测结果接受了靶向治疗(n = 5)或联合化疗(n = 3)。其他受试者仅接受化疗(n = 7),仅接受手术(n = 2)或未接受进一步治疗(n = 3)。在接受评估的患者中,28%(5/18)的免疫组织化学靶标与相关基因变化有关。结论:对于复发性儿童脑肿瘤,快速选择靶向治疗是可行的,但采用统一的联合治疗方案治疗是不可行的。
基于网格的大脑皮层重建是脑图像分析的基本组成部分。经典的、迭代的皮层建模流程虽然稳健,但通常很耗时,这主要是因为涉及拓扑校正和球面映射的程序成本高昂。最近使用机器学习方法解决重建问题的尝试加速了这些流程中的一些组件,但这些方法仍然需要缓慢的处理步骤来强制执行符合已知解剖结构的拓扑约束。在这项工作中,我们引入了一种基于学习的新型策略 TopoFit,它可以快速将拓扑正确的表面拟合到白质组织边界。我们设计了一个联合网络,采用图像和图形卷积以及高效的对称距离损失,以学习预测将模板网格映射到特定于受试者的解剖结构的准确变形。该技术涵盖了当前网格校正、微调和膨胀过程的工作,因此与传统方法相比,它为皮层表面重建提供了 150 倍的更快解决方案。我们证明 TopoFit 是 1。比目前最先进的深度学习策略准确率高出 8 倍,并且对白质组织低信号等常见故障模式具有很强的鲁棒性。关键词:皮质表面重建、拓扑、几何深度学习
a 荷兰马斯特里赫特大学心理学与神经科学学院认知神经科学系脑刺激与认知科 b 荷兰马斯特里赫特脑成像中心 (MBIC) c 荷兰奈梅亨马克斯普朗克心理语言学研究所神经系统语言与计算组 d 荷兰奈梅亨拉德堡德大学唐德斯认知神经成像中心 e 荷兰马斯特里赫特大学医学中心 + (MUMC +) 脑 + 神经中心、精神卫生与神经科学学院 (MHeNs) 精神病学和神经心理学系 f 荷兰马斯特里赫特大学综合神经科学中心 (CIN)
1 北京大学物理学院,介观物理国家重点实验室,北京 100871 2 中国科学院微电子研究所,北京 100029 3 上海交通大学物理与天文学院,新型光通信系统与网络国家重点实验室,上海 200240 4 浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江大学-杭州全球科技创新中心,杭州 310027,中国 5 布里斯托大学 HH Wills 物理实验室和电气电子工程系量子工程技术实验室,BS8 1FD,布里斯托,英国 6 西澳大利亚大学物理系,珀斯 6009,澳大利亚 7 北京大学纳米光电子前沿科学中心和量子物质协同创新中心,北京,100871,中国 8 山西大学极端光学协同创新中心,太原 030006,山西,中国 9 北京大学长三角光电研究所,江苏南通 226010,中国。 10 上述作者对本文贡献相同。电子邮件至:yyang10@ime.ac.cn、xiaoyonghu@pku.edu.cn、qhgong@pku.edu.cn、jww@pku.edu.cn
合成。研究自然界中发现的结构已经并将继续推动 3D 制造策略的发展。近年来,该领域的进展取得了巨大的进步,如今相对容易制造的结构在几十年前似乎是不可能的。新的发展,特别是在由软材料或包含软硬成分的混合结构制成的结构构造方面不断涌现。创造模仿生物材料的特性和功能或可以与生物材料相互作用、探测和控制生物材料的软合成结构继续推动该领域的研究。这里,我们重点介绍了文献和我们研究的最新贡献,并利用报告强调了在软材料功能集成到复杂形式的 3D 架构的背景下,软材料化学进展的机会和当前需求。本文考虑的方法旨在强调异质集成的最新范例——利用定向组装和打印来构建复杂功能复合材料结构的 4D 制造方法。
摘要:DEAD-box ATPase 是 RNA 生物学各个方面必不可少的普遍存在的酶。然而,这些酶有限的体外催化活性与它们复杂的细胞作用不一致,最显著的是它们在核糖核蛋白 (RNP) 组装过程中驱动大规模 RNA 重塑步骤。我们描述了 60S 核糖体生物合成中间体的低温电子显微镜结构,揭示了 DEAD-box ATPase Spb4 的上下文特异性 RNA 解旋如何导致 rRNA 二级结构的广泛、序列定向重塑。多个顺式和反式相互作用稳定了催化后高能中间体,从而驱动 rRNA 结构域 IV 内根螺旋结构的组织。该机制解释了如何利用 DEAD-box ATPase 有限的链分离来提供非平衡方向性并确保高效准确的 RNP 组装。
抽象腐蚀一直是海洋环境中钢结构最严重的关注点。由于生物污染的广泛出现,除了电化学腐蚀,微生物学诱导的污染物(MIC)是触发海洋钢基础设施逐渐变化的重要因素。传统的抗腐蚀涂层通常缺乏海洋微生物的防染色功能,依恋和定植,因此在大多数情况下会加速现有的腐蚀损害。通过热喷雾制造的抗腐蚀涂层已广泛用于预防海洋腐蚀,但是通过热喷雾技术途径沉积的抗MIC涂料仍然难以捉摸。开发带有双反腐蚀和防撞性能的液压涂层是打击麦克风的关键。在这篇综述中,了解生物造成和发展反污染和反mic
如果不及时治疗,GD会导致大量致残率和死亡率[3]。TSHR是目前GD病因和发病机制研究的重点,TSHR是GD发病的重要独立危险因素[4]。许多学者[5–7]推测促甲状腺激素受体抗体(TRAb)是一种针对TSHR的自身反应性抗体,该抗体与甲状腺细胞膜上的TSHR结合,导致甲状腺细胞刺激、过度生长和甲状腺激素合成。激素分泌增加导致甲状腺毒症[8]。ATD治疗的时间受TRAb滴度的影响[9]。细胞间粘附分子1(ICAM-1)是免疫球蛋白超家族的成员,表达于抗原呈递细胞的质膜上。ICAM-1在自身免疫性甲状腺疾病和GO的发展中起重要作用[10,11]。血清中可溶性 ICAM-1 水平与 GO 活动性和严重程度相关,可用于
语言是人类的一项独特功能,涉及创造、表达、理解和维护有关世界的层次结构信息。毫无疑问,语言是通过神经元和突触的活动实现的——但是如何实现的呢?之前在认知实验(心理语言学、计算心理语言学和脑成像)方面进行了广泛的研究,这些研究已经对大脑如何处理语言产生了许多见解(请参阅第 2 节的概述)。然而,这些进展尚未产生关于单个神经元活动如何产生语言的具体叙述。特别是,我们不知道有哪个实验通过模拟神经元和突触重现了相当复杂的语言现象。这是本文所追求的方向。发展对人类大脑神经元如何产生语言的总体计算理解受到神经科学现状的阻碍,神经科学(a)主要
病史 患者为足月女婴,顺产分娩,出生体重 2.2 公斤。父母健康,无任何疾病,非近亲结婚;他们的孩子未患病;母亲(27 岁)在怀孕期间未接受任何药物治疗。分娩后,患者被诊断出患有 PRS(染色体研究正常,46 条 XX 染色体),随后因呼吸窘迫综合征立即进入新生儿重症监护病房。为治疗 PRS 导致的正常呼吸困难,医生为患者建立了气管切开管,后来患者反复出现医院内获得性胸部感染。3 个月大时,患者在儿科重症监护病房接受胸部感染治疗;她