J n Sengupta博士(校长,M.Sc(Double) d)Sahana Sengupta教授(M.Sc(Double),M.Phil,攻读博士学位)B.B. 博士 Jana(邮政博士,博士,卡利亚尼大学),卡利亚尼大学)R.Sett教授(Post Doc,Phd,Phd,M.Sc)B.C Ghosh博士(Post Doc,Phot dop,Phd,Phd,Retd iit,Kharagpur)教授RK Ghosh教授RK Ghosh博士(RK GHOSH博士) Senapati(博士学位, Phil,Vidyasagar教授,SKBU)PP Sharma博士(MB,MBBS)S Bera博士(MD,MBBS) 健康政府。 W.B)S Majumder博士(PT医生)Sulagna Mondal教授(MMLT,BMLT) (M.SC)D Mukherjee教授(攻读博士,马萨诸塞州)R Khatun教授(攻读博士学位,M.A,UGC Net)R Chatterjee教授(M.Sc,Ramakrishna Mission)A Nandi教授A Nandi(M.Sc,Ramakrishna Mission)(Ramakrishna Mission) JANA(攻读博士学位,硕士医学生物技术)Paul A Paul(M.Sc,Ramakrishna Mission)教授S Manna(M.Sc double)A Basak教授(M.Sc,Ramakrishna Mission)教授A Hazra(M.Mlt,B.Mlt)J n Sengupta博士(校长,M.Sc(Double)d)Sahana Sengupta教授(M.Sc(Double),M.Phil,攻读博士学位)B.B.Jana(邮政博士,博士,卡利亚尼大学),卡利亚尼大学)R.Sett教授(Post Doc,Phd,Phd,M.Sc)B.C Ghosh博士(Post Doc,Phot dop,Phd,Phd,Retd iit,Kharagpur)教授RK Ghosh教授RK Ghosh博士(RK GHOSH博士) Senapati(博士学位,Phil,Vidyasagar教授,SKBU)PP Sharma博士(MB,MBBS)S Bera博士(MD,MBBS)健康政府。W.B)S Majumder博士(PT医生)Sulagna Mondal教授(MMLT,BMLT) (M.SC)D Mukherjee教授(攻读博士,马萨诸塞州)R Khatun教授(攻读博士学位,M.A,UGC Net)R Chatterjee教授(M.Sc,Ramakrishna Mission)A Nandi教授A Nandi(M.Sc,Ramakrishna Mission)(Ramakrishna Mission) JANA(攻读博士学位,硕士医学生物技术)Paul A Paul(M.Sc,Ramakrishna Mission)教授S Manna(M.Sc double)A Basak教授(M.Sc,Ramakrishna Mission)教授A Hazra(M.Mlt,B.Mlt)
结果和讨论:在这里,我们组装并注释了A. albus的完整基因组,提供了一个染色体级的组件,总基因组大小为5.94 GB,而Cortig N50为5.61 MB。A. albus基因组组成了19,908个基因家族,其中包括467个独特的家族。与A. konjac相比,A. albus的基因组大小稍大,可能受到了最近的全基因组重复事件的影响。转录和代谢分析揭示了参与苯基 - 丙型生物合成的差异表达基因(DEG)和差异积累的代谢产物(DEG)的显着富集,植物激素信号传递,苯基丙氨酸代谢,苯丙氨酸的代谢和生物合成的生物合成,苯基烷胺,Tyroptanin和Tyropt。这些发现不仅提高了对A. albus的遗传和进化特征的理解,而且还为未来研究Konjac对南部疫病疾病的抗性机制的研究奠定了基础。
pogostemon cablin(Patchouloi)是一种著名的多年生草本植物,用于中药,其主要的生物活性化合物是Patchouloulolol和Pogostone。Patchouli的生物合成途径已经很早就解决了,而Pogostone的生物合成途径由于缺乏直接合成Pogostone的末端酶而无法完全解决。在这里,本研究旨在通过综合转录组和代谢组分分析来预测Pogostone生物合成的末端酶,并重建其最可能的完整生物合成。广香叶的代谢组和转录组纤维与根和茎的叶子大致不同。广圆紫胶类似物(如广宁酸酯和叶氨基烯)主要积聚在叶片中,而pogostone含量的根部含量更高。基于对差异表达的基因和代谢产物的综合分析,我们重建了广丘洛尔的生物合成途径,并预测了pogostone的最可能完整的生物合成途径。此外,我们还鉴定了29个涉及广patlouli的新辛托比底基因组Pogostone生物合成的高表达基因,并且它们的大多数表达水平与Pogostone含量密切相关。尤其是Patcholi Bahd-DCR酰基转移酶(BAHD-DCR)在系统发育上远离但与其他已知的植物Bahd酰基转移酶相似,但结构上相似。他们中的大多数具有保守的催化基序HXXXD,催化中心可以与4-羟基-6-甲基-2-吡酮和4-甲基化甲基-COA和Pogostone的产物分子的广泛认识的底物分子结合。因此,建议广pation胶根中高表达的bahd-dcrs是直接合成pogostone的末端酶。这里的发现提供了更多支持的证据
●哥伦比亚的森林森林砍伐在环境和经济上都是不可持续的。该国每年损失200,000至300,000公顷的树木覆盖物,以扩大农业和牧场,非法采矿或非法作物。在各个部门,生态系统和市政当局之间的意义上存在显着差异。破坏森林不仅会影响环境。它对受影响社区的经济和社会发展也有负面影响。实际上,森林砍伐减慢了市政级别的人均GDP的融合,对低收入市政当局产生了更大的影响。此外,根据未满足基本需求指数等指标,森林砍伐和减少贫困之间没有相关性。
补体系统是先天免疫系统的一部分。主要称为导致膜攻击复合物(MAC)形成的过程,该过程破坏了靶细胞触发细胞裂解和死亡的细胞膜,但补体系统具有额外的效应子功能,例如靶向细胞的分配和促进渗透量(1,2)。止血是导致受伤血管出血的过程。它是通过三个主要步骤开始的:血管收缩,血小板塞的形成和纤维凝块形成由凝结级联反应介导的(3)。补体系统和凝结级联反应依赖于丝氨酸蛋白酶的顺序激活,并要求在露天或改变的表面被激活,并为外部威胁提供先天的防御。总结了许多评论(4-6)中,补体和凝结系统之间存在广泛的串扰,这并不奇怪,因为它们具有共同的进化起源(7)。For example, complement components such as C3, C4, C5a and factor B (FB) are found in thrombi ( 8 ) and we previously showed that mannose-binding lectin (MBL) of the lectin pathway (LP) of complement activation co-localises with activated platelets and von Willebrand factor (vWF) in a microvascular bleeding model ( 9 ).MBL相关的丝氨酸蛋白酶1和2(MASP-1,MASP-2)的凝集素途径已显示与活化的血小板结合(10)和C3结合VWF(11)。补体和凝结级联反应的激活也导致血细胞和内皮细胞的激活,结果此外,已显示替代补体途径(AP)在锚定在内皮细胞上的超大VWF多聚体上组装和激活(12)。我们先前表明MASP-1可以激活凝血酶原(13),并且对MBL和MASP-1的抑制会在微血管出血模型中降低损伤部位的纤维纤维形成和/或血小板激活(9)。
气候变化的后果紧急要求减少大气碳,包括通过隔离土壤中的碳。羊膜菌根真菌(AMF)的肾小球蛋白相关的土壤蛋白(GRSP)以其土壤聚集和碳固执特性而闻名。具有相当大的结合能力,GRSP还可以吸附各种阳离子,并在土壤中隔离重金属,从而有助于土壤受精和修复工作。然而,尽管它对土壤健康和气候变化有益,但在土壤化学的背景下,这些特征的基础机制仍未得到探索。在这篇综述中,我们关注GRSP的三个至关重要的作用 - 长期碳固醇,土壤聚集以及土壤补救和生育能力 - 在先前的研究(即疏水性)阐明的化学特征的背景下,即组糖基化(N-糖基化)和金属吸附。基于提出的化学机制,当前的综述还提供了对可能影响GRSP持续性的土壤因素的见解。我们通过为GRSP提出一个工作模型来结束,旨在为将来的研究建立一个概念平台,以研究其已知或新颖的化学或生化反应,从而提高我们对这一重要土壤蛋白质群体的理解。
本单元旨在为学习者提供对人工智能(AI)领域(AI)的全面介绍,涵盖了古典和现代方法。学习者将探讨AI基础的基本概念,技术和哲学,包括知识表示,推理,机器学习(包括神经网络的概述,神经网络作为大脑神经元的模型的生物学基础,以及非线性激活激活,以相似地激活spiking to Spiking),以及搜索Algorithms,以及Algorithms。该部门还研究了人工智能的道德和哲学含义及其未来的挑战。通过完成本单元,学习者将获得与高级研究中更专业的AI主题相关的必要基础知识。
由于地形驱动的动力学在(次)公里(例如Bora风)和复杂的海洋测深的测定法上引起的,其中包括许多通道,凹陷和山脊,在半封闭的Adriatic区域内的大气 - 海洋动力学在可用的环境区域模型中无法很好地复制。因此,特定开发了亚得里亚海和海岸(Adrisc)公里大气层模型,以准确评估历史(1987-2017)和远处(2070-2100)条件下的亚得里亚海气候危害。在这项研究中,我们分析了气候变化对预计的亚得利亚趋势,可变性和极端事件的影响。在大气中,我们的结果主要遵循已经发表的文献:强烈的土地对比,干旱增加和极端的降雨事件以及沿海地区的风速下降。在海洋中,表面和中等温度的强度和恒定升高与盐度降低有关,除非夏季盐度在沿海地区上升的表面。在底部和海洋循环中,我们的结果表现出强烈的对比。在沿海地区,底温度上升,底部盐度的速度降低了,而当前速度的变化可以忽略不计。在亚得里亚海最深的部分,负底温度趋势会导致比表面慢2.5°C慢,而底部盐度增加。此外,洋流在表面和中间层中加速,但在底部减速。这些海洋的结果表明,北部亚得里亚海中茂密的水的形成减少,南部亚得里亚海气旋回旋的强化和收缩,以及在代码深处的最深部分的垂直地层加强可能与亚种式水水和亚法利亚水平的变化相关的垂直地层。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。鉴于这些变化对亚得里亚海沿海社区和海洋生物的潜在影响,这项研究强调了增加亚得里亚海地区正在进行的千年规模建模工作,旨在实施政策和适应计划,以更好地针对该规范区域预测的当地气候变化量身定制。
摘要宫颈癌是一种恶性肿瘤,可以传播(转移)向其他可能导致死亡的器官传播(转移)。根据全球癌症研究负担(Globocan),宫颈癌的主要原因中有95%是人乳头瘤病毒(HPV)。到目前为止疫苗接种是防止HPV感染的一种方法。类型的病毒(例如颗粒(VLP)病毒疫苗)与弱化病毒疫苗的类型不同。没有遗传物质,因此不能具有传染性和复制性,这是与使用活病毒在疫苗生产开发中使用的疫苗类型相比,这是潜在的VLP安全。在这项研究中,它更加专注于评估4个VLP VLP VLP设计模型嵌合HPV 18/45/59,这些模型已修改了LOOP,DE,EF,EF,FG,HI,HI具有免疫信息方法。结果表明,模型3疫苗的设计具有最佳,最安全的评估,包括抗原性(0.5284),物理化学特性(分子量为51.16 kDa,等电(PI)5.71和Grvy 0.358),并且疫苗没有引起过敏的反应和毒性。In addition, Model 3 vaccine candidates show significant immunogenicity, namely an increase in antigens on the 5th day, and began to decline on the 20th day, meaning that the body responds to the vaccine as an antigen marked by an increase in immunoglobulin M (IGM) and immunoglobulin G (IgG) which is 1.4 x 10 6 Count/ml长期。该结果表明,模型3具有用作有效且安全的疫苗的最大潜力。关键字:宫颈癌,人乳头瘤病毒(HPV),诸如粒子>的病毒
总体状态和结果:实现PDO和实施进展的进展已升级为令人满意。项目支出率为58.63%,占第一个额外融资(AF1)(TFA5789)的95%和第二次额外融资的11%(AF2)(AF2)(AF2)(TFB5182)。该项目具有长期的承诺,通过实施综合行动来促进土地规划和广泛领土的管理。它促进了保护领土(保护区,土著地区,拉姆萨尔遗址),保护生态系统连通性,生物学和文化多样性以及生态系统服务的维护。这有助于与全球生物多样性框架,国家生物多样性计划以及Herencia Colombia(HECO)等的国家目标有关的国家目标。该项目还在亚马逊的森林砍伐和退化地区工作,支持社会参与和规划过程,以实现社区森林经济以及围绕森林和水资源提供的产品和服务的链条。该项目直接有助于将四个森林砍伐核转化为森林发展和生物多样性核(NDFYB)。这种干预是制止森林砍伐和国家恢复计划的国家战略的一部分。最后,该项目在与其他部门建立协议方面取得了进展,以促进公共政策连贯性,这有助于亚马逊的综合发展。组件3:治理,政策和激励措施。这包括与交通,农业和规划部门的协议,涉及有关市政条例计划,道路计划以及遵守最高法院刑期4320的协议,该刑期将亚马逊视为权利。该项目的机构安排继续是其以可持续性改善治理的PDO的巨大成功之一。这些安排在项目执行中深深地涉及来自国家和次国环境制度的所有相关实体,提高机构技能,并促进机构内部以及社区和民间社会组织的合作。这个加强过程将持续到该项目的持续时间之外,并将促进由最近批准的生命和生物多样性基金资助的新项目的实施,其公共资源将在与该项目协同的领域中为行动提供资金。以下积极成就突出:组成部分:保护区(PA)管理和财务可持续性。(i)六个国家PA和三个区域PA提高了其管理效率水平,总计约700万公顷; (ii)通过天桥,卫星图像以及预防以及对地面监视的控制,对森林砍伐和火灾暴发的监测继续进行。组件2:可持续的森林和水管理和使用。组件4:协调,管理,监视和评估。(iii)加强土著和地方社区的治理; (iv)宣布区域保护区Bajo Guayabero的进展,尤其是社区的参与和验证; (v)开发参与式生态恢复(REP)过程,并在土著地区签署新的粮食安全协议; (vi)促进当地社区之间对话的空间,传播自然资源恢复和管理方面的最佳实践; (vii)在塔拉波托·拉姆萨尔(Tarapoto Ramsar)中使用Mesa Ramsar Estrella flyvial deInírida(EFI)(EFI)和AsociaciónIndígenaTicoya详细阐述的管理计划中的战略路线的实施,包括当地社区的工作,包括当地社区的工作。(i)地理区域及其当地社区和组织的优先级以及生物物理和社会经济表征,以开发社区林业和森林管理计划; (ii)对当地社区的森林管理培训,包括森林清单的发展和组织企业家的加强; (iii)确定当地组织以签署新的保护协议,包括社区林业,生物经济和生态旅游; (vi)考虑传统实践,对优先森林物质的物候研究的信息以及诸如对恢复过程进行恢复过程的外壳,考虑传统实践,从现有森林物质的物候研究中进行了积极和被动的恢复。(i)加强政府机构,包括向市政官员和地方政府提供技术援助,以调整其土地利用规划工具; (ii)支持运输部门在批准,开发和维护三级道路中应用环境标准的支持; (iii)在禁用非法运输基础设施的协议合并方案的进展以及受亚马逊开放和运营影响的区域的恢复; (iv)非法土地道路的制图分析; (v)监视亚马逊可持续模式运输计划(PATIS)的实施; (vi)与地理研究所AgustínCodazzi(IGAC)制定新协议,以在多功能Cadaster和农村农业规划部门(UPRA)开展工作,以分析正式和非正式农业边界的动态。(i)管理年度运营计划,采购计划和项目的财务执行; (iii)对森林和碳监测系统对森林砍伐的监测和分析,该系统报告说,与2022年同期相比,在2023年1月至2023年9月之间估计的森林砍伐量下降了69%。水文,气象与环境研究研究所(IDEAM)正在驾驶恢复监测活动,预计将应用于干预区域; (iii)伙伴实体和政府参与国际活动,以促进项目的结果,交流知识,加强能力并促进该国关于国际协议的谈判; (iv)通过多个媒体渠道(网站,社交媒体,播客)实施通信策略的进步,以外部传播项目结果,以及向年轻领导者网络的能力建设; (v)连续测量受益人的满意度与项目提供的支持程度,结果表明满足了90%的满意度。
