简介。不受束缚的微型机器人可以以微创方式输送治疗剂 [1],进入人体其他无法到达的区域 [2, 3]。这些微型机器人在生物医学中的潜在应用非常广泛,从传感 [4-7] 到药物输送 [8-10],甚至再生医学 [11] 等。特别是,微型机器人非常适合再生医学中的细胞应用,因为它们可以快速穿透细胞并实现有效的细胞内输送 [3]。旨在修复受损或患病的组织和器官 [12] 的细胞疗法需要将细胞精确运送到目标位置进行移植 [13, 14]。任何细胞输送失败都可能导致严重的免疫反应 [15]。因此,确保准确、无创地输送细胞至关重要,而微型机器人可以发挥至关重要的作用 [16]。
远程监视是,通过:Companion Remote Monitoring:MyLife™Camaps®FX应用程序允许最多10个“伴侣”共享用户的数据。远程监视已集成到该应用程序中,因此用户和“ companion”都使用MyLife™Camaps®FX应用程序。伴侣远程监视镜像用户的MyLife™Camaps®FX应用程序中的数据。每分钟每分钟更新数据(CGM数据,胰岛素数据,警报)或每5分钟(其他数据)(其他数据)中的“同伴” MyLife™Camaps®FX应用程序。“同伴”可能会为用户的Camaps FX应用程序设置不同的警报和警报。无胰岛素修改功能(提升,缓解,推注计算器等)将能够在Companion应用程序上使用。出于安全原因,这些功能必须在用户的应用程序上进行操作。Internet连接性和共享数据的同意需要与“同伴”共享数据。当前可用于可以访问Android设备的护理人员。基于SMS的远程监视:MyLife™Camaps®FX应用程序支持基于SMS的远程监视。所有MyLife™Camaps®FX应用程序生成的警报和警报将通过SMS消息发送至最多5个“关注者”。用户必须有一张SIM卡才能允许从其手机发送SMS。我们建议用户检查其移动计划包括SMS覆盖范围。基于SMS的远程监视可用于使用Android或Apple设备的护理人员。同伴和SMS远程监视功能,在儿童 /年轻人的MyLife™Camaps®FX应用程序的共享菜单中不需要时,可能会使它们变得不活跃。
上下文。在先前的研究中估计了冠状环中扭结波的能量频道。最近的数值模拟表明,扭结振荡可以在磁性流管中诱导开尔文 - 螺旋不稳定性(KHI)。这种非线性过程打破了通常包含在先前的本本征分析中的假设。因此,需要重新检查当前能量磁通的分析表达式。目标。在当前的工作中,我们的目标是将数值频率与以前的分析公式进行比较,并为冠状环中扭结波的能量频率估算而建立修改。方法。在理想的磁流失动力学(MHD)的框架内工作,我们进行了三维(3D)冠状动脉圆柱振荡的模拟。还采用了前向模型将我们的数值结果转化为使用FOMO代码的可观察结果。结果。我们发现,先前对扭结能量频道的估计是合理的,直到在KHI充分开发之前。然而,随着小涡流的发展,从分析公式中得出的能量频道变得小于根据我们的数值结果计算得出的总po弹孔。此外,当降低原始数值分辨率以匹配逼真的仪器分辨率时,例如,太阳能轨道(SO)上的极端紫外成像仪(EUI)时,能量频率比数值小得多。结论。应通过将其乘以约2倍来修改根据分析公式计算出的能量频道。涉及基于SO / EUI观察的能量频道估计,该因素应大约在3和4之间。< / div>。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2023年6月22日发布。 https://doi.org/10.1101/2023.03.13.13.532460 doi:Biorxiv Preprint
1型糖尿病是一种严重的慢性疾病,胰岛素产生已经停止。急性和慢性并发症的风险都会增加,如果疾病无法正确管理,与总体相比,预期寿命可以缩短。有几种不同的治疗形式,其中最常见的是自身注射胰岛素笔与葡萄糖表的结合,该葡萄糖表位于皮肤下方,并连续测量组织液中的葡萄糖水平。主要的选择是通过一个小泵添加胰岛素,该小泵不断地向皮下脂肪添加不同量的胰岛素。允许患者根据审核员的葡萄糖值剂量胰岛素。该开发的第三个也是最新的变体是如此被称为高级混合泵系统,其中泵主要由组织中的葡萄糖含量(使用数字反馈电路)控制。但是,患者仍必须在某些情况下控制泵,例如与餐食有关。
大脑计算机界面(BCIS)将大脑活动转化为数字命令,以与物理世界互动。该技术在几个应用领域具有巨大的潜力,从医疗应用到娱乐业,并为认知神经科学的基础研究创造了新的条件。当今的BCIS,仅对用户当前心理状态的原油在线分类,而对精神状态的更复杂的解码取决于耗时的offline数据分析。本文通过利用一组分析管道的改进来直接解决此限制,从而为下一代在线BCI铺平了道路。特别是我们引入了一个开放源研究框架,该框架具有模块化和可定制的硬件设计。此框架促进了人类在循环(HIL)模型培训和再训练,实时刺激控制,并使转移学习和云计算用于脑电图(EEG)数据的在线分类。刺激和研究人员的诊断。使用实验室流层标准和Websocket发送消息。实时信号处理和分类以及机器学习模型的培训,由开源Python包装时间频率促进。框架在Linux,MacOS和Windows上运行。虽然在线分析是BCI-HIL框架的主要目标,但可以通过MNE,EEGLAB或FIELDTRIP(例如Python,Matlab和Julia)对EEG数据进行OfflINE分析。本文描述并讨论了人类在BCI研究平台的理想特性。BCI-HIL框架是根据MIT许可发布的,其示例为:bci.lu.se/bci-hil(或at:github.com/bci-hil/bci-hil)。
在项目的过程中,客户登记了由Kraken Platform 5自动化的V2G充电和释放的托管关税,该收费和释放自动化,该平台5负责最佳地安排EV行为以及和解和计费。客户能够输入其充电偏好(目标最高(SOC)和准备就绪),并通过章鱼能源应用程序查看他们的每日V2G时间表;客户收费的首选项被视为V2G计划中的最重要偏好。在BM试验阶段之前,Powerloop在托管充电和放电关税上使用V2G电动汽车显示出巨大的价值潜力。通常,最佳行为包括在下午的高峰期内进行V2G排放和出口,然后在准备就绪的时间内对目标SOC充电。
电池储能控制器 (BESC) 可以平衡电力需求和供应的不匹配,提高海港微电网的灵活性和弹性。但是,需要测试 BESC 的功能,并验证它是否可以通过对电池充电和放电来平衡电力供需不平衡。本研究的主要目的是实施硬件在环 (HIL) 测试以验证控制器的功能。本文研究了港口电网中将使用的 BESC 的测试性能,通过适当地对电池储能系统进行充电和放电来调整电力供应和负载需求的不匹配。在输配电网络电力容量有限的港口电网中,所提出的 BESC 可以有效节约能源并减少峰值负载需求。BESC 最初是在 MATLAB/Simulink 中离线开发的,然后在基于 FPGA 的外部控制器中实现,该控制器使用 IEC61850 通信协议和 GOOSE 消息与 OPAL-RT 实时模拟器交互。 BESC 在外部 FPGA 板上配置和实施。此外,还利用了当地配电系统运营商 Vaasan Sahkoverkko 和港口运营商 Vaasa 的 Kvarken 港口的真实数据,以现实场景评估所建议的电池储能系统控制算法的有效性。模拟结果表明,BESC 可以通过对电池进行充电和放电来平衡微电网内的电力需求。© 2023 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
现在看来,尽管许多热心、善意的人怀有最美好的愿望,而且在投入了数百万美元的风险投资后,人类现在不得不被迫得出这样的结论:超级高铁项目不仅不可行,而且缺乏可行性,不值得进一步投入时间、精力和风险投资。20 世纪 70 年代初人们如此积极设想的太空计划,可悲的是,几乎都未能实现。人们曾希望,到 2000 年,至少能有某种可行的太空旅行,就像电影《太空堡垒卡拉狄加》和《2001:太空漫游》中描绘的那样;但不幸的是,正如后来的几代人所发现的那样,这并没有实现,他们注定要像之前的科学家和政府机构一样,在太空旅行的梦想方面经历更多令人沮丧的失望。从历史上看,人类对失望并不陌生,除了少数例外,人类最终都能将失败和失望转化为胜利和成功。然而,就太空旅行而言,残酷的事实是,地球上载人飞行在最初五十年中取得的进步远远超过载人航天旅行在最初五十年中取得的进步,最终突破了音障。许多失败的太空计划(以 Hyperloop® 系统为代表)令人失望的事实是:一、它很危险;二、它仍然无法以大多数国家可以承受的合理价格将哪怕是中等重量的负载运送到太空。这些失败是过去所有太空计划的共同失败,似乎确实是巨大的,无法解决的。至少在 Hydroloop® 系统诞生之前,情况一直如此,因为 Hydroloop® 系统不仅是目前人类唯一可行、实用且现实的解决方案,解决了 Hyperloop 的所有缺点,它不仅有望降低从地球到外太空的任何运输的总体成本,而且还有望清洁、安全和高效地完成运输。Hydroloop® 系统还解决了地球上存在的许多生态问题,而 Hyperloop 系统及其太空计划根本无法解决这些问题。简而言之,Hydroloop® 系统是一种多功能运输系统,可无缝过渡到使用清洁的可持续能源。它还利用其多隧道管道系统提供了一种极其有效的运输清洁淡水的方法,不仅能够以其他系统的一小部分成本运输货物、人员、信息和能源等,而且同时它还通过使用生态可行且经济可持续的解决方案解决了人类目前面临的 6 个关键挑战:1. 清洁能源转型:向清洁可持续能源的无缝过渡是一项重要要求,也是确保人类乃至地球上所有生命的更清洁、更健康的世界的根本必要条件。
新的回收技术和创新合作伙伴关系在法国首次为循环经济服务,宠物锅和托盘的回收领域正在将历史回收利益与制造商Carbios和Eastman等新玩家汇集在一起。所选项目将机械回收与化学或生物学(使用酶)回收技术相结合,以使宠物罐和托盘与食物接触。可以机械回收的一些盆和托盘,具有更简单的组成(清晰,单层)。从2025年的Paprec中处理至少17,000吨包装的两个获胜项目,已被选为Citeo提出的吨位的70%。首先,将开发单层托盘的机械回收,从而可以与食物接触。然后,由于与伊士曼的商业合作伙伴关系,盆和托盘将由该工厂处理,该工厂将在服务端(76)中建造。该包装将使用一项通过解散化学回收利用化学回收的技术进行回收,从而可以重用与食物接触。Paprec已与Citeo签订了为期9年的合同。已选择由Carbios,Wellman和Volorplast组成的财团,占Citeo提出的吨位的30%。该财团将确保从2023年开始的单层和多层托盘回收。Wellman最初将操作单层托盘的分离,该托盘将机械回收并重新用于食品包装。从2025年开始在Longlaville的未来工厂开始,Carbios将由Carbios处理其余部分(54)。该植物将是世界上第一个能够生物鉴定所有类型的宠物的植物,尤其是多层。通过该项目,法国公司Carbios将使用高度选择性的酶将宠物锅和托盘转变为适合与食物接触的宠物,将其独特的技术应用于大规模。这也是9年的合同。宠物锅和托盘:与食物接触的备受期待的再利用,在法国销售的宠物锅和托盘一直在机械上进行回收,并且仅在欧洲有限的数量。一些宠物锅和托盘具有确保产品安全性所必需的复杂结构,直到现在,这使他们的回收变得困难。这个新的活动领域将能够处理它们,从这个意义上讲,这是一场真正的革命,这是循环经济不断增长的家庭包装建筑的新砖块。