准确修复DNA双链断裂(DSB)对于基因组稳定性至关重要,并且有缺陷的修复是癌症等疾病的基础。同源重组使用完整的同源序列来忠实地恢复受损受损的DNA,但是损坏的DNA终止如何在包含数十亿个非同源碱基的基因组中找到同源位点,尚不清楚。在这里,我们介绍了姐妹孔C,这是一种高分辨率方法,用于绘制复制染色体中的分子内和转运相互作用。我们通过募集两个功能上不同的粘蛋白池来证明DSBS重塑染色体体系结构。环形成粘着蛋白积聚在巨型尺度范围内,以控制围绕破裂位点的拓扑关联结构域(TAD)内的同源性采样,而粘性粘着蛋白将浓缩的位点浓缩到蛋白质染色剂的链球末端。这种双重机制限制了同源性搜索空间,突出了染色体构象如何有助于保持基因组完整性。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
本文介绍了针对海洋表面车辆(MSV)的双环自适应轨迹跟踪控制系统,该系统既解决运动学和动态干扰。该方法始于外环的后台控制策略,该策略在运动级别生成速度命令,以确保对MSV的位置和标题进行准确跟踪。一个自适应估计器已整合以评估未知的海洋电流速度,从而有效地补偿了其影响。内环控件采用线性参数化来在动态级别产生扭矩命令,从而确保实际速度和指挥速度状态之间的对齐。提出了两种自适应调整定律:一个用于估算具有挑战性的水动力参数,另一个用于补偿外部海洋干扰。双环控制可显着减轻运动学和动态干扰的影响,从而提高了MSV跟踪的精度和整体性能。稳定性,并得出了系统未知参数的适应定律。数值模拟证明了拟议的控制策略的功效。
近来,需要高平均功率激光束的应用数量急剧增加,涉及大型项目,如空间清洁 [1]、航天器推进 [2]、粒子加速 [3],以及工业过程 [4] 或防御系统 [5]。激光光束组合是达到极高功率水平的最常用方法之一,特别是相干光束组合 (CBC) 技术 [6]。它们旨在对放大器网络传输的平铺激光束阵列的发射进行相位锁定,以产生高亮度的合成光束。由于实际激光系统(尤其是光纤激光系统)中阵列中光束之间的相位关系会随时间演变,因此这些技术必须通过伺服环路实时校正合成平面波的相位偏差。近年来,CBC 技术得到了广泛发展,探索了调整合成离散波前中各个相位的不同方法。它们可以分为两大类。在第一类中,测量阵列中光束的相位关系,然后进行校正 [7]。在第二种方法中,实际波前和期望波前之间的差异通过迭代过程得到补偿 [8]。在后一种情况下,优化算法驱动反馈回路,分析所有光束之间干涉的阵列相位状态的更多全局数据 [9,10]。这些技术通常更易于实施,所需电子设备更少,但需要更复杂的数值处理,其中一些技术在处理大量光束时速度会降低。最后一个问题与反馈回路中达到预期相位图所需的迭代次数有关,该迭代次数会随着要控制的相位数的增加而迅速增加。最近,人们研究了神经网络 (NN) 和机器学习,以期找到一种可能更简单、更有效的方法来实现相干光束组合。已发表的文献 [11] 中涉及的一种方案依赖于卷积神经网络 (VGG) 的直接相位恢复,然后一步完成相位校正,例如在自适应光学 NN 的开创性工作 [12]。 NN 用于将光束阵列干涉图样的强度(在透镜焦点处形成的远场或焦点外的图像、分束器后面的功率等)直接映射到阵列中的相位分布中。恢复初始相位图后,可以直接应用相位调制将相位设置为所需值。[11] 中报告的模拟表明,当阵列从 7 条光束增加到 19 条光束时,基于 CNN 的相位控制的精度会下降。这一限制在波前传感领域也得到了强调,因此 NN 通常仅用作初始化优化程序的初步步骤 [13]。另一种可能的方案是强化
I. 简介 深空通信系统在非常远的距离内运行,而机载能量发生器的容量非常有限,导致接收端的信噪比 (SNR) 非常低。这就是使用接近香农极限的纠错码的原因。然而,为了利用这种增益,必须进行相干解调,并且必须在更严格的 SNR(对于 Turbo 码 1/6,𝐸 𝑠 /𝑁 0 ≃ – 8 dB)下提供载波相位同步。分配给深空任务的频谱资源是有限的(X 波段 8 GHz),为了优化频谱效率,空间数据系统咨询委员会(CCSDS)建议 [1] 对于 B 类任务(深空任务)使用预编码 GMSK 调制(高斯最小频移键控),高斯滤波器带宽位周期积𝐵𝑇 𝑏 = 0.5,对于 A 类任务(低空任务)使用 GMSK 𝐵𝑇 𝑏 = 0.25。本文讨论了一种由最大后验(MAP)准则和洛朗展开式 [3] 衍生的用于 GMSK 调制的盲相位检测器 [2]。为了评估该相位检测器在非常低的 SNR 下在闭环结构中的性能,我们考虑了 [4] 和 [5] 中描述的另外两个简化版本。我们对线性和非线性域中的这三种不同结构进行了全面研究。我们还介绍了使用低速率纠错码(Turbo 1/6)进行计算机模拟所获得的结果。这项工作的目的是比较这三个相位检测器的性能,并评估为获得两个简化版本而进行的简化的影响。
在接入分布式能源的过程中,光伏发电系统面临间歇性和波动性问题,对电网的稳定性带来巨大挑战。大量研究探索了各种控制策略来应对这些挑战,包括下垂控制、虚拟同步发电机 (VSG) 控制等。然而,现有方法往往难以为电力系统提供足够的惯性和阻尼支持,尤其是在动态条件下。本文旨在通过介绍一种基于改进的光储系统中有功功率环的自适应惯性控制方法来突破这些限制。该方法旨在优化分布式光伏接入过程中出现的冲击和不稳定现象,减少系统波动,降低振荡超调,提高系统的动态性能。首先,介绍了光伏电池和蓄电池的数学模型和控制方法。其次,解释了传统 VSG 的控制原理。然后,将自适应惯性算法纳入VSG控制的有功功率环中,提出了一种基于改进有功功率环的自适应惯性控制方法。最后,通过仿真验证了所提方法的有效性。
由项目运营的最后5年造成的排放减少,以弥补类似于缓冲池的任何潜在排放量短缺。如果给定的项目未完成或不符合预计的减少或删除福利,则相对于此类自愿碳补偿的措施因合同而有所不同,但可能包括已支付的金额或缓冲池信用额的分配。
清晰的沟通是紧急情况下或完成关键任务时团队成员之间进行有效沟通的一种方法。清晰的沟通最初用于军事和航空领域,以实现有效沟通,后来被人类医学和兽医学所采用,特别是在复苏方面(1、2)。在人类复苏和创伤医学以及其他干预措施期间,清晰的沟通对于避免潜在的致命错误至关重要(3、4)。事实证明,诸如清晰的沟通之类的改进沟通可以提高人类医疗团队在模拟训练和现实紧急情况下的表现(5-7)。清晰的沟通包含三个部分:(第 1 部分)发送者请求指定接收者采取行动;(第 2 部分)接收者以声音确认消息;(第 3 部分)发送者以声音确认收到消息(8、9)(图 1)。成功的 CLC 有助于减少因沟通不畅而导致的失误 ( 10 ),这不仅是因为可以识别出被分配了命令的指定接收者,还因为让接收者复述请求。CLC 还有助于团队建立共享的心理模型,正如基于证据的人类医疗团队绩效框架所建议的那样 ( 11 )。兽医复苏重新评估运动 (RECOVER) CPR 计划表明,在 CPR 期间使用 CLC 可以提高团队绩效 ( 1 )。尽管有这些基于证据的建议,但人类和兽医研究均表明,在现实危急事件和研究观察环境中,CLC 的使用率出奇地低 ( 6 , 12 )。一家兽医教学医院的研究报告称,在 22 起事件中只有 6 起 (27%) 使用 CLC ( 13 )。这些数据表明,CLC 可能是一项难以教授的技能。由于目前的沟通培训技术缺乏效力,因此有必要研究新技术。兽医 CPR 模拟训练课程不仅可以培养实践和技术技能,还可以培养 CLC 等沟通技能。RECOVER CPR 计划的结论是,团队沟通培训可以提高 CPR 团队的效率 (1)。在人类医学领域,最近的研究 (14,15) 报告称,在训练课程中,当首席复苏师蒙上眼睛时,CLC 会增加。据作者所知,目前还没有研究在 CPR 训练期间检查兽医团队的 CLC。本研究的目的是调查在兽医 CPR 模拟课程中蒙上首席复苏师的眼睛对完成 CLC 数量的影响。
超导电子设备的发展需要仔细表征化妆电子电路的组件。超导弱环节是大多数超导电子组件的构建块,其特征是高度非线性的电流到相位关系(CPRS),通常不完全知道。最近的研究发现,约瑟夫森二极管效应(JDE)可能与嵌入超导干涉仪中的弱环节的弱环节的高谐波含量有关。这使JDE成为探索单谐波CPR以外的弱环节的谐波内容的天然工具。在这项研究中,我们介绍了双环超导量子干扰装置(DL-squid)的理论模型和实验特征,该设备嵌入了全金属超导型金属 - 金属 - 超导 - 超导体连接。由于三个弱连接的超电流的干扰,该设备在并联的三个弱环上的干扰而表现出JDE,并且可以通过两个磁通量调节该功能,这些磁通量充当实验旋钮。我们根据干涉仪臂的相对重量以及有关通量可调性和温度的实验表征进行了对设备的理论研究。