本文是在供应链三个不同领域中审查和分类文献的首次尝试,包括:绿色供应链(GSC),封闭环路供应链(CLSC)和反向供应链(RSC),它们部分相互联系。出于这个原因,这三个主题中的每个主题都被分为几个标准,每个标准都是对几个类似问题的回顾。这项研究的目的是:阐明在提到的供应链管理的三个提到的研究人员的调查中经历了不同领域;显示绿色供应链管理,闭环,供应链管理和反向供应链管理的差异和相似性;在这三个领域为研究人员提供未来的研究方向。这项研究试图通过审查其他研究并将其汇总到部分。第一部分将讨论已完成的操作,第二部分正在审查发现的内容。查找还讨论了这三个主题及其界限的所作所为,以及对未来工作的建议(可以做什么)。
摘要。操作员是指挥和控制系统中的主要漏洞来源之一;例如,79% 的航空致命事故归因于“人为错误”。根据 Avizienis 等人的故障分类系统,操作时的人为错误可以描述为操作员在与指挥和控制系统交互时未能提供服务。然而,之前很少有研究尝试将导致操作员处于错误模式的多种不同故障来源区分开来。本文提出了对 Avizienis 等人分类法的扩展,以便更全面地考虑人类操作员,明确导致操作员偏离正确服务交付的故障、错误状态和故障。我们的新分类法提高了对故障的理解和识别,并提供了关于可以避免或修复人为服务故障的方法的系统见解。我们提供了来自航空和其他领域的影响操作员和容错机制的故障的多个具体示例,涵盖了人机交互循环操作员侧的关键方面。
摘要 — 飞机上的许多无线通信系统缺乏标准的安全机制,从根本上来说,它们很容易受到攻击。随着价格合理的软件定义无线电的出现,一种新的威胁出现了,使各种攻击者能够轻松干扰无线航空电子系统。虽然这些漏洞是已知的,但利用它们的具体攻击仍然是新的,尚未得到很好的理解。尤其是它们对受攻击飞机的操纵及其安全性的动能影响。为了调查这一点,我们邀请了 30 名空客 A320 型飞行员在模拟器场景中飞行,在这些场景中,他们的航空电子设备受到了攻击。我们实施并分析了对三个安全相关系统的新型无线攻击:交通防撞系统 (TCAS)、近地警告系统 (GPWS) 和仪表着陆系统 (ILS)。我们发现,所有三种分析的攻击场景都通过转向、规避操作和转移造成了重大的控制影响和中断成本。它们进一步增加了工作量,增加了对受影响系统的不信任,并且在 38% 的情况下导致受攻击的安全系统完全关闭。所有飞行员都认为这些场景很有用,93.3% 的飞行员认为无线攻击的模拟器训练很有价值。
电源电压(每个电源),V DD(见注释 1)7 V 。......................。。。。。。。。。。。。。。。。。。。。。。。。.输入电压范围(每个输入),V I(见注释 1)–0.5 V 至 V DD + 0.5 V ..............................输入电流(每个输入),I I ± 20 mA ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..输出电流(每个输出),I O ± 20 mA ....................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.持续总功率耗散,在(或低于)TA = 25°C(见注释 2)700 mW ........。 。 。 。 。 。 。 。 . . . . . . . . 工作自然空气温度范围,TA –20°C 至 75°C 。 div> . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . 存储温度范围,T stg –65 ° C 至 150 ° C . . . . . . . . . 。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒 260 ° C 。 . . . . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。。。。。。。。。........工作自然空气温度范围,TA –20°C 至 75°C 。 div>............。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . 存储温度范围,T stg –65 ° C 至 150 ° C . . . . . . . . . 。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒 260 ° C 。 . . . . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.存储温度范围,T stg –65 ° C 至 150 ° C .........。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒 260 ° C 。 . . . . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。。。。。。。。。.....。。。。。。。。。。。。。。。。。。。。。。。。...... div>距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒 260 ° C 。......... div>.....。。。。。。。。。。。。。。。。
_______________________________________________________________________ Greenko TS02 OCPSP Rev – R0 预可行性报告
可穿戴的电子纺织品(电子纹理)正在通过创新应用来改变个性化的医疗保健。然而,将电子设备集成到纺织品中,以使电子废物的迅速增长的电子废物(电子废物)和纺织品回收迅速增长,这是由于混合材料所需的复杂的回收和处理过程,包括纺织品纤维,电子材料和组件。在这里,通过融合了基于石墨烯的电子纹理的热 - 自由解析,以将其转换为石墨烯样的电式回收粉末,以据报道可穿戴电子纹理的第一个闭环回收。然后,一种可伸缩的干燥涂层技术用于再现基于石墨烯的可穿戴电子纹理,并将其潜在的医疗保健应用作为捕获电动员电脑(ECG)信号和温度传感器的可穿戴电极。此外,基于再生石墨烯的纺织品超级电容器强调了它们作为可持续储能设备的潜力,保持了显着的耐用性并在1000个周期后保持≈94%的电容,而面积电容为4.92 MF CM-2。这种可持续的闭环回收电子纹理的回收展示了其重新利用为多功能应用的潜力,从而促进了一种圆形方法,从而在极度阻止了环境影响负面影响并减少了土地填充。
特刊“交互式学习:为主动人机交互的循环系统设计中的人类设计”已经扩展了!潜在的主题:认知负载 - 可以使用模型来调整决策。应该预培训(即,为普通用户学习),而应进行交互或个性化的数量(即,对特定用户进行微调)?响应设计和相互作用的方式 - 使用自然/隐式反馈信号,例如自然语言,语音,眼动,面部表情和互动过程中的手势。有效的相互作用 - 速度和相互作用数量。人类的偏好或内部奖励是非平稳的,并且会随着时间的流逝而变化。限制可能是由于缺乏信任,可用性和生产力,尤其是在适应不可预见的阶级和任务环境中的变化时。特定的系统体系结构 - 问题和机器学习应用程序;人类信任问题不同的建筑问题。案例研究 - 例如,GIS中的图像分割和区域数字化之类的案例研究是可取的。
抽象糖尿病专家和学者之间关于技术和人工智能(AI)的话语通常以10%的患有1型糖尿病的糖尿病患者为中心,专注于葡萄糖传感器,胰岛素泵,越来越多的闭环系统。这种重点反映在会议主题,战略文件,技术评估和资金流中。正如已发表的文献和新兴市场产品所证明的那样,通常被忽视的是数据和AI的广泛应用,这为增强临床护理,健康服务效率和成本效益提供了有希望的途径。本综述提供了AI技术的概述,并在广义背景下探讨了AI和数据驱动系统的使用和潜力,涵盖了所有糖尿病类型,包括:(1)患者教育和自我管理; (2)临床决策支持系统和预测分析,包括诊断支持,治疗和筛查建议,并发症预测; (3)使用多模式数据,例如成像或遗传数据。审查提供了关于数据和AI驱动系统如何在未来几年转化糖尿病护理以及如何将它们整合到日常临床实践中的观点。我们讨论了有关利益和潜在危害的证据,并考虑了可扩展采用的现有障碍,包括与数据可用性和交换相关的挑战,健康不平等,临床医生的犹豫和监管。利益相关者,包括临床医生,学者,专员,决策者以及具有生活经验的人,都必须积极合作,以实现AI支持的糖尿病护理所带来的潜在利益,同时减轻风险并在此过程中引起挑战。
https://doi.org/10.26434/chemrxiv-2024-b2651 orcid:https://orcid.org/0000-0001-6558-8712 content content content content note contect contem许可证:CC由4.0
选择电池类型后,在调试期间要进行的最后一个设置是低压断开(LVD)和低压重新连接(LVR)负载控制设置。但是,当使用塔锂电池电池配置为闭环BMS时,该系统将强制执行最小的载荷SOC断开20%,而最小负载SOC重新连接了25%。这会影响负载配置文件设置,如下所示:●如果所选的预设或自定义负载配置文件使SOC负载断开并重新连接禁用,则系统将自动将SOC负载将连接设置为20%,而SOC负载在引导时将其设置为25%。●如果所选的预设或自定义负载配置文件与SOC负载断开并分别重新连接20%和25%,则系统将分别在启动时自动将值提高到20%和25%。●如果所选的预设或自定义负载配置文件与SOC负载断开并分别重新连接20%和25%,则在启动时没有覆盖设置。