近年来,太空探索工作越来越集中于对火星和月球等行星和卫星的表面探索。这是通过使用流浪者来实现的,流浪者能够跨天体旅行并进行研究活动。但是,完成任务可能具有挑战性,必须及时解决问题,以避免丢失Sciminific Data甚至Rover本身。鉴于与火星(Olson,Matthies,Wright,Li,&di)的有限通信能力,必须迅速检测到异常,因为没有现场人工干预的可能性。要面对这个问题,NASA分别开始开发其漫游者的物理双胞胎,例如对好奇心和毅力的乐观情绪(Cook,C。,Johnson和Hautalu-Oma)(Castelluccio,)。同时,NASA和西门子研究了一个好奇的数字双胞胎,以使用SIM-DIOSOTOPE热电学发电机(MMRTG)使用SIM-Center 3D(M.I.T.,M.I.T.,)分析和解决由多损耗ra-Dioasotope热电学发电机(MMRTG)引起的散热问题。同样,欧洲航天局
摘要行业5.0的出现为制造业提供了新的观点,目的是使可持续,以人为中心和弹性的方法融合。供应链通过将供应商与客户联系并提供增值产品和服务来实现这些目标,在实现这些目标中发挥了至关重要的作用。,尽管兴趣越来越大,但对制造业范式转变的考虑仍然是无定形的。为了解决这一差距,本文介绍了对103个研究文章的系统文献回顾,该文章的初始语料库为8,079,并提出了制造业中供应链5.0的概念框架。该框架是在文献的主题上划分的,包括过渡的驱动因素,对制造供应链,Chal Lenges和结果的影响。这项研究为寻求研究行业5.0供应链的含义的研究人员,从业者和政策制定者提供了宝贵的见解,突出了其在增强可持续性,社会福祉和经济增长方面的潜力。此外,拟议中的Coneptual框架和研究机会旨在指导围绕此新兴主题的未来研究和实际应用。
摘要在整个船舶设计过程的早期阶段开发的船舶推进系统的建筑对船舶的整体设计和性能产生了很大的影响。到达最后一艘船舶保护架构的设计空间探索可能是一个相当复杂的过程,用于高性能“组合”的“船舶推进系统”,旨在实现多个,经常相互冲突的设计目标。本文提出了一个基于基于模型的“技术经济和环境风险评估”(TERA)方法的设计空间探索过程的新过程,该方法是使用混合的“多重标准决策制定”(MCDM)程序执行的,以从竞争的推进系统中选择构建设计空间的竞争推进系统中的解决方案。该过程利用了从开发模型的性能模拟产生的性能数据的组合,以及基于比较的专家意见的指标,用于船舶设计过程中无法选择“妥协解决方案”的信息。本文包括一个说明性的示例,说明了拟议过程在设计空间探索的拟议过程中,用于合并的推进系统体系结构。
课程描述人工智能探索及其在学校的实际应用通过演示、实际使用示例、实施工具和资源以及互动活动向您介绍人工智能 (AI) 领域及其在 K-12 环境中的应用。本课程重点介绍人工智能技术的各个方面,这些技术有可能促进和利用学习,并解决学校和社区中的实际问题。作为教育工作者,您还将学习向学生揭示人工智能技术如何融入我们生活的许多不同方面。您将积极参与课程内容,参与在线活动并完成动手作业以应用您的学习。在整个课程中,您将获得可供借鉴的策略,因为您将开发一个基于项目的单元,学生可以在其中应用人工智能来解决问题。
摘要。近年来,自然语言处理领域(NLP)发生了一场革命,文字一代在这一转变中起着关键作用。这种转变不仅限于技术领域,而且还无缝渗透了创意领域,一个很好的例子是歌曲歌词的一代。真正有效的生成模型,例如生成训练的预训练变压器(GPT)-2,需要进行微调作为关键步骤。本文利用了广泛参考的Kaggle数据集的鲁棒性,标题为“歌曲歌词”,仔细探讨了调节三个关键参数的影响:学习率,批处理大小和序列长度。数据集提出了一个引人入胜的叙述,该叙述将学习率视为最有影响力的决定因素,直接影响了产生的歌词的质量和连贯性。在增加批处理大小和扩展序列长度有望增强模型性能的同时,很明显,还有一个饱和点,超出该点的效果受到限制。通过此探索,本文旨在揭开模型校准的复杂世界,并强调战略参数选择在追求抒情卓越方面的重要性。
Solvay是一家科学公司,其技术为日常生活的许多方面带来了好处。在64个国家 /地区拥有超过23,000名员工,债务人,想法和要素可以重塑进步。该小组试图为所有人创造可持续的共享价值,特别是通过其Solvay One Planet路线图围绕三个支柱制作:保护气候,保护资源并促进更好的生活。该集团的创新解决方案有助于在房屋,食品和消费品,飞机,汽车,电池,智能设备,医疗保健应用,水和空气净化系统中发现的更安全,清洁剂和更可持续的产品。成立于1863年,今天的Solvay在其绝大多数活动中排名全球前三家公司,并在2020年提供了90亿欧元的净销售额。solvay在布鲁塞尔和巴黎(Solb)上列出。在www.solvay.com上了解更多信息。
摘要 公共部门采用人工智能 (AI) 有可能改善服务交付。然而,与人工智能相关的风险很大,公民的担忧已经停止了多项人工智能计划。在本文中,我们报告了一项关于挪威公民对公共服务中使用人工智能的态度的实证研究的结果。我们发现公民普遍持积极态度,并确定了三个促成这一结果的因素:a) 对政府的高度信任;b) 人类参与所带来的保证;c) 对流程、用于人工智能模型的数据以及模型内部运作的透明度。我们通过社会契约理论的视角来解释这些发现,并展示了人工智能在公共服务中的引入如何受社会契约权力动态的影响。我们的研究通过突出政府与公民的关系为研究做出了贡献,并对公共部门的人工智能实践产生了影响。
加快其在人工智能领域的全球领导地位的战略。为此,成立了世界上第一个人工智能部,并任命了一位专门的人工智能部长——奥马尔·苏丹·阿尔
许多科学家 [Lynch,1960;Piaget 和 Inhelder,1967;Siegel 和 White,1975] 已经观察到认知地图被组织成连续的层,并提出对大规模环境的有用且有力的描述的核心要素是拓扑描述。分层模型包括从局部感官信息中识别和辨认地标和地点;路线控制知识(从一个地方到另一个地方的过程);连通性、顺序和包含的拓扑模型;以及形状、距离、方向、方位以及局部和全局坐标系的度量描述。看来,认知地图的分层结构是人类在大规模空间中稳健表现的原因。我们的方法试图将这些方法应用于机器人探索和地图学习问题。我们定性方法中对环境的核心描述是拓扑模型,如 TOUR 模型 [Kuipers,1978]。该模型由一组节点和弧组成,其中节点代表环境中可识别的位置,弧代表连接它们的行进路径。节点和弧是根据机器人的感觉运动控制能力程序性定义的。度量信息添加到拓扑模型之上。