自 2019 年冠状病毒病 (COVID-19) 出现以来,全球公共卫生基础设施和系统以及社区范围内的合作和服务都面临着前所未有的挑战。疫苗开发立即成为我们所有科学、公共卫生和社区工作的中心。尽管 SARS-CoV-2 疫苗的开发可以说是过去 12 个月中最伟大、最明显的成就,但它们也是疫情期间最具争议和争论的问题之一。然而,疫苗开发的独特之处在于它与其试图服务的社区有着密切的关系;无论是作为一种有效和安全的预防措施进行的临床试验测试,还是作为一种有效的公共卫生工具在开发后“推广”的成功。这些关系产生了无数的复杂性,从基于社区的不信任到学术上争论的道德困境。事实上,COVID-19 疫苗竞赛的加速发展进一步加剧了这一现象,带来了新的伦理困境,需要对其进行研究以确保这些疗法在临床上继续取得成功,并恢复社会对临床医学的信任。在本文中,我们讨论了两个主要的伦理困境:(1) 在成功候选疫苗出现时继续进行新疫苗试验的平衡和 (2) 盲法安慰剂组的弊端。因此,我们讨论了解决这些伦理困境的六种不同方法:(1) 继续进行安慰剂对照试验,(2) 从安慰剂对照过渡到开放标签,(3) 仅对高风险优先组进行揭盲,(4) 过渡到盲法阶梯楔形交叉设计,(5) 进展到盲法活性对照阶梯楔形交叉试验,以及 (6) 进行随机阶梯楔形社区试验。我们还为疫苗试验后期的相关利益相关者提出了一种决策算法。重要的是要记住,COVID-19 疫情的突发性并不意味着可以对核心道德价值观做出妥协。事实上,围绕这一主题的讨论和所做出的决定将仍然是一个有力的案例研究,并将成为未来所有此类情景的一个不断参考的例子。
冠状病毒继续对全球公共卫生构成重大挑战,新变种的出现需要进一步努力来控制和管理病毒。在这种情况下,接种疫苗是限制 COVID-19 大流行蔓延的重要方法。然而,疫苗犹豫是阻碍遏制冠状病毒努力的最重要和最具影响力的问题之一;它与其他对疫苗接种有直接或间接影响的因素有关,包括心理因素 ( 1 , 2 )。然而,在中东和阿拉伯国家,COVID-19 疫苗犹豫与心理健康之间的关联尚未得到充分研究。因此,确定这些心理因素以制定干预措施和促进疫苗接受度非常重要 ( 3 )。多项研究发现,在 COVID-19 大流行期间,普通公众或医护人员中精神健康障碍的患病率增加,尤其是焦虑、恐惧和抑郁 ( 1 , 4 )。这些研究结果虽然有用,但并未超越疫情爆发到疫苗接种阶段,它们探讨了精神健康障碍,但并未将其与 COVID-19 疫苗犹豫直接联系起来,而且它们解释某些人为何不愿接种疫苗的能力仍然有限 (5)。研究人员一致表示,在 COVID-19 大流行期间报告的焦虑和抑郁症状的增加可能对疫苗犹豫产生影响 (6)。然而,先前针对这一问题的研究结果存在显著差异。例如,由于社交限制而每天感到焦虑、悲伤和烦躁的参与者对疫苗犹豫不决,而仅在某些日子报告同样感受的参与者犹豫不决较少 (7)。其他研究表明,报告有焦虑或抑郁症状的人对疫苗犹豫较少 (5)。虽然焦虑、恐惧和其他心理障碍似乎是疫苗犹豫的原因之一,但心理障碍和犹豫之间的关系可能是相互的。对疫苗安全性和有效性的担忧以及可能的副作用会引发疫苗犹豫和抵制。因此,犹豫不决的个人与社会直接对抗,因此会面临更多
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。
联系方式:马丁·韦切夫教授,苏黎世联邦理工学院,瑞士,silq@inf.ethz.ch 背景:最近的努力已经将量子计算机改进到可以在某些任务上超越传统计算机的程度,这种情况被称为量子霸权。量子计算机运行量子算法,通常用低级量子语言 Silq 表示。我们发布了 Silq,这是第一种旨在从量子算法的低级实现细节中抽象出来的高级量子语言。Silq 在 GitHub(https://github.com/eth-sri/silq)上公开可用,并根据免费开源 Boost 软件许可证 1.0 获得许可。作为一项关键的创新,Silq 有助于弥合经典语言和量子语言之间的概念差距。因此,Silq (i) 降低了非专业量子程序员的入门门槛,(ii) 通常有助于简洁明了地表达复杂算法,以及 (iii) 促进了 50 多年来为传统计算开发的编程和分析技术向量子编程领域的技术转移。比较。虽然传统上量子算法通常以电路的形式指定,但量子语言更方便地将量子算法表达为源代码。然而,现有的量子语言迫使程序员在较低的抽象层次上工作,仍然本质上指定将量子操作明确应用于单个量子位的量子电路。因此,用这些语言实现量子算法是繁琐且容易出错的。相比之下,Silq 支持对量子算法的描述性视图,表达了程序员的高级意图。然后,将这些算法编译成低级量子电路成为二阶关注点,可以由专门的编译器处理,就像在传统编程语言中一样。我们的实验评估表明,Silq 程序比其他量子语言中的等效程序短得多(Q# 平均缩短 46%,Quipper 缩短 38%),同时仅使用一半的量子原语。因此,Silq 程序不仅更短,而且更易于读写,因为它们需要的原语和概念更少。大部分评估都集中在 Q# 上,因为 (i) 它是使用最广泛的量子语言之一,(ii) 我们认为它比 Cirq 或 QisKit 更高级,(iii) 2018 年和 2019 年的 Q# 编码竞赛提供了大量 Q# 实现,我们可以利用它们进行比较。
怀孕:与talquetamab相关的与妊娠有关的风险尚不清楚,也没有关于该药物在期望妇女或动物中使用的数据。众所周知,在怀孕的头三个月后,人IgG穿透了胎盘。结果,塔尔奎塔姆(Talquetamab)可能会从母亲转移到成长中的胎儿。尚不确定talquetamab如何影响胎儿的增长。不建议怀孕或不打算怀孕的妇女服用Talquetamab。怀孕期间的塔尔奎塔省可能会导致新生儿免疫系统减弱。因此,直到出生四个星期后,不应对新生儿(例如BCG疫苗)进行实时免疫接种。
在NP-GET计划下的一个YP-I,一个YP-II下一个YP-II,一个YP-II,在CDDL计划下进行的YP-II和一个YP-II在ASF上进行的YP-II和一个在CDDL计划下进行的YP-II,将在ASF上进行步入式访问,以招募年轻的专业/年度/不规律的/不规律的/不规律的计划,并进行招募/不规律的计划,并进行招募/不规律的计划。该研究所的各个项目/计划下的伊卡尔国家高安全动物疾病研究所的各种日期。帖子的详细信息,资格,条款和条件等。详细介绍了下面的详细信息: - 步入式访问日期的任何更改仅在Institute网站www.nihsad.nic.in上通知。严格建议候选人在参加面试之前访问网站。
One YP-I under NP-GET Programme ,One YP-II under CRPVD Project, One YP-II under CDDL Program on Avian Influenza and One YP-II under CDDL Program on ASF The Walk-in-Interview will be conducted for recruitment of Young Professional-II and Young Professional-I (purely time bound/non-regular/temporary/contractual engagement and co-terminus with the concerned program/scheme)在该研究所的各个项目/计划下,在伊卡尔国家高安全动物疾病研究所的各种日期。帖子的详细信息,资格,条款和条件等。详细介绍了下面的详细信息: - 步入式访问日期的任何更改仅在Institute网站www.nihsad.nic.in上通知。严格建议候选人在参加面试之前访问网站。
不可接受的毒性。1每个治疗周期为28天。应在周期1开始,在周期2开始,总共6个周期。由于不良事件,血液学毒性或药物相互作用与细胞色素P450(CYP)3A抑制剂可能需要减少或抑制剂量。1 CYP3A inducers may decrease Calquence plasma concentrations, therefore a dose of 200 mg every 12 hours is recommended, as tolerated, in patients taking strong CYP3A4 inducers (e.g., apalutamide, carbamazepine, enzalutamide, mitotane, phenytoin, rifampin, St. John's wort).可用性可容纳100毫克胶囊(停产)和60瓶提供的片剂。1 policy tatement该药物数量管理计划是为了促进安全,有效和经济使用的制定计划。如果在服务点未满足所请求的药物的药物管理规则,则覆盖范围将由以下标准确定。所有批准的持续时间为1年。药物数量限制
Marie 是 Sappos Environmental, Inc. 的总裁。她是加州环境专业人员协会的当选董事会成员,并担任全国环境专业人员协会的联络人,她也是全国环境专业人员协会的当选董事会成员。Campbell 女士在根据《国家环境政策法》(NEPA)和《加州环境质量法》(CEQA)准备环境合规文件方面拥有超过 35 年的经验。她曾担任许多 NEPA/CEQA 联合环境文件的战略顾问或项目经理。她目前担任建筑包 4 部门的环境监督经理和弗雷斯诺-贝克斯菲尔德部分本地生成替代部门的环境合规经理
利用人工智能减轻青少年危险行为:范围界定审查方案 Hamidreza Sadeghsalehi a 和 Hassan Joulaei a,* a 伊朗设拉子医科大学健康研究所卫生政策研究中心 * 通讯作者(joulaei_h@yahoo.com) 青少年特别容易从事暴力、无保护性行为和药物滥用等危险行为,这些行为会对他们的健康和发展产生重大的负面影响。人工智能 (AI) 的最新进展为解决这些行为提供了创新的解决方案,但关于基于 AI 的干预措施的有效性和实施的证据仍然零散。本范围界定审查旨在系统地探索和绘制旨在减少青少年危险行为的基于 AI 的干预措施的文献。本综述将遵循 Arksey 和 O'Malley (2005) 概述并由 Levac、Colquhoun 和 O'Brien (2010) 改进的方法框架,符合 Joanna Briggs 研究所的指导方针。PRISMA 范围界定综述扩展 (PRISMA-ScR) 将指导报告。搜索策略将在 PubMed、Scopus、Web of Science 核心合集、CINAHL、PsycINFO、Cochrane 对照试验中心注册库、Embase、SID 和 Magiran 中执行,重点关注截至 2024 年 6 月以英语和波斯语发表的文章。两名独立审阅者将使用 Rayyan 筛选标题和摘要,然后对相关研究进行全文筛选。数据将使用标准化表格绘制图表,差异将通过讨论或咨询第三位审阅者解决。数据将以描述性方式综合并以表格、图形和图表的形式呈现。关键词:青少年、人工智能、危险行为、范围审查、干预措施