帕金森氏病(PD)是一种复杂的疾病,受多种遗传危险因素影响。在病理和临床上,PD表现中存在显着的异质性。影响患者的一些最常见和最重要的症状是认知障碍和痴呆症。然而,尚不清楚认知方差异的遗传和生物学基础,包括PD中痴呆症的发展,尚不清楚。了解基因在认知结果中的作用对于有效的患者咨询和治疗至关重要。对家族性PD的研究发现了20多个可能引起该疾病的基因。负责PD家族病例的识别基因是LRRK2,PARK7,PINK1,PRKN或SNCA基因,尽管可能还有其他基因也有助于。此外,其中一些基因也可能在以前被认为是零星的病例中起作用。目前,许多描述的基因增加了PD认知能力下降的风险,每个基因的外渗水平都不同。本综述的目的是确定导致认知差异的相关遗传因素。我们讨论可能影响认知的基因以及建立明确的遗传诊断和预后评估的挑战。本文旨在证明PD认知遗传背景的复杂性,并介绍不同类型的基因型变化类型,这些变化可以通过各种神经生物学机制影响认知。
1, SFEBq = serum-free floating culture of em- bryoid body-like aggregates with quick aggrega- tion, CGE = Caudal Ganglionic Eminence, SS = Subpallium Spheroids, SAG = Smoothened Agonist, CXCR4 = Chemokine Receptor type 4, CO = Cortical Organoids, ALI-Cos = Air-Liquid Interface culture to Cerebral Organoids, MPCs = Mesoderm Progenitor Cells, IBA1 = Ionized calcium-Binding Adapter molecule 1, WDR62 = WD Repeat domain 62, KIF2A = Kinesin Fam- ily Member 2A, CEP170 = Centrosomal Protein 170, NARS1 = asparaginyl-tRNA synthetase 1, RGC = Radial Glial Cells, CNV = Copy Num- ber Variation, PTEN = Phosphatase and Tensin homolog, ODC1 = Ornithine Decarboxylase 1, PKB = Protein Kinase B, ASDs = Autism Spec- trum Disorders, FOXG1 = Forkhead Box G1, CHD8 = Chromodomain Helicase DNA-bind- ing protein 8, DEGs = Differentially Expressed Genes, DISC1= Disrupted-in-Schizophrenia 1, GSK3 = Glycogen Synthase Kinase 3, RTT = Rett Syndrome, MeCP2 = Methyl-CpG-binding protein 2, ERK = Extracellular signal-Regulated Kinase, MAPK = Mitogen-Activated Protein Ki- nase, MDS = Miller-Dieker Syndrome, AD = Alzheimer's Disease, APP = Amyloid Precursor Protein, PSEN = Presenilin, APOE = Apoli- poprotein E, NFT = NeuroFibrillary Tangles, MMP = Metalloproteinase, PD = Parkinson's Disease , SNCA = Synuclein Alpha, LRRK2 = Leucine Rich Repeat Kinase 2, HD = Huntigton's Disease, GSCs = Cancer Stem Cells, GBOs = Glioblastoma Organoids, TBI = Traumatic Brain Injury, CCI = Controlled Cortical撞击,NSE =神经元特异性烯醇酶。
专有计划),主要是在OPM-101的临床开发和肿瘤学临床前筛查中,带来令人鼓舞的临床前结果。dijon(法国),2024年9月25日,下午6:00 - CEST-跨编码设计精确医学(OPM)(ISIN:FR001400CM63; Mnemonic:Mnemonic:Alopm),一家生物制药公司,一家专门针对九月25日批准的批准的董事会批准的生物制药公司,专门针对Precision批准,该公司的批准是204.204,该公司的第一个载于204.25 2024。OPM首席执行官 Philippe Genne说:“在仍然沮丧的地缘政治背景下,我们已经开始2024年,面临着我们面前的一些关键挑战。 尤其是我们资产OPM 101和201的第2阶段的过渡,首先是OPM的优先级和其长期增长的保证,第二个是其短期和中期增长的保证,其大量里程碑来自较较高的实验室;以及我们与Navigo Protein GmbH合作的新系统放射疗法研究计划的开发。 在年初,我们完成了OPM-101的第1阶段健康志愿者,没有问题。 结果非常积极,并暗示了该候选者的巨大潜力,没有毒性和出色的药理学特征,其中OPM-101符合并超过抑制RIPK2所需的血清水平。 OPM计划在2024年第四季度或2025年初开始入学1B/2A期临床试验。 这是OPM的两个关键新闻。 总而言之,我们的主要产品正在追求其开发,并及时Philippe Genne说:“在仍然沮丧的地缘政治背景下,我们已经开始2024年,面临着我们面前的一些关键挑战。尤其是我们资产OPM 101和201的第2阶段的过渡,首先是OPM的优先级和其长期增长的保证,第二个是其短期和中期增长的保证,其大量里程碑来自较较高的实验室;以及我们与Navigo Protein GmbH合作的新系统放射疗法研究计划的开发。在年初,我们完成了OPM-101的第1阶段健康志愿者,没有问题。结果非常积极,并暗示了该候选者的巨大潜力,没有毒性和出色的药理学特征,其中OPM-101符合并超过抑制RIPK2所需的血清水平。OPM计划在2024年第四季度或2025年初开始入学1B/2A期临床试验。这是OPM的两个关键新闻。总而言之,我们的主要产品正在追求其开发,并及时另一方面,OPM-2011在Servier Laboratories的LRRK2目标方面似乎证明了相同的特征,而第一阶段的健康志愿者非常接近完成,我们的合作伙伴也在启动其1B/2A期。此外,我们已经成功地申请了与我们的研究项目有关的几个法国2030年呼吁(Comete,Animus和Democtite),在未来3至5年内资助850万欧元。
参考文献 (1) Golbe, LI 和 Ohman-Strickland, PA 进行性核上性麻痹的临床评定量表。Brain 130, 1552-1565 (2007)。 (2) Dam, T. 等人。单克隆抗 tau 抗体 Gosuranemab 在进行性核上性麻痹中的安全性和有效性:PASSPORT 试验。Nat Medicine X, XX (2021)。 (3) Hoglinger, GU 等人。tilavonemab 在进行性核上性麻痹中的安全性和有效性:一项 2 期随机安慰剂对照试验。Lancet Neurology 20, 182-192 (2021)。 (4) Jadhav, S. 等人。tau 治疗策略概述。Acta Neuropathol Commun. 7, 22 (2019)。 (5) Sopko, R. 等人。 gosuranemab 表征 tau 结合。Neurobiol Dis。146, 105120 (2020)。(6) Yanamandra, K., 等人。抗 tau 抗体可降低不溶性 tau 并减少脑萎缩。Ann Clin Transl Neurol。2, 278-288 (2015)。(7) Kim, B., 等人。Tau 免疫疗法与 FTLD-tau 中的神经胶质反应有关。Acta Neuropathol。doi:10.1007/s00401-021-02318-y。提前在线 (2021)。(8) Jabbari, E., 等人。TRIM11 基因座的变异改变了进行性核上性麻痹表型。Ann Neurol。84, 485-496 (2018)。 (9) Biogen 在阿尔茨海默氏症试验阴性后暂停 Gosuranemab 的治疗。https://www.alzforum.org/news/research-news/biogen-shelves-gosuranemab-after-negative- alzheimers-trial (2021)。(10) Jabbari, E., 等人。进行性核上性麻痹生存的遗传决定因素:全基因组关联研究。柳叶刀神经病学 20, 107-116 (2021)。(11) Evans LD、Strano A、Campbell A 等人。全基因组 CRISPR 筛选确定 LRRK2 调节的内吞作用是人类神经元摄取细胞外 tau 的主要机制。预印本网址为 https://www.biorxiv.org/content/10.1101/2020.08.11.246363v1 (2020)。 (12)Myeku,N.,等人。Tau 驱动的 26S 蛋白酶体损伤和认知功能障碍可能是
摘要帕金森氏病(PD)的特征是黑质(SNC)多巴胺(DA)神经元的死亡,但在其死亡之前的病理生理机制仍然未知。PD中DA神经元的活性可能会改变,但我们对活性的慢性变化是否可能导致退化。为了解决这个问题,我们开发了一种化学遗传(Dreadd)小鼠模型,以长期增加DA神经元的活性,并使用离体电生理学证实了这种增加。DA神经元的慢性过度激活导致在光周期期间运动活性的延长,并在黑暗循环期间减少,这与DA释放和昼夜节律干扰的慢性变化一致。我们还观察到了SNC投影的早期优先退化,从而概括了SNC轴突选择性脆弱性的PD标志和腹侧段面积轴突的比较弹性。接下来是中脑DA神经元的最终丧失。连续的DREADD激活导致基线钙水平持续增加,这支持了在神经变性过程中钙增加的重要作用。最后,来自研究中脑DA神经元和纹状体靶标的无多小鼠的空间转录组学,以及与人类患者样品的交叉验证,提供了对多动症诱导的毒性和PD的潜在机制的见解。因此,我们的结果揭示了SNC DA神经元对增加神经活性的优先脆弱性,并支持增加神经活动在PD驱动变性中的潜在作用。引言帕金森氏病(PD),尼格拉(Nigra)pars commanta(SNC)多巴胺(DA)神经元的丧失导致基底神经节中电路动态的严重破坏。多巴胺损失的补偿涉及在电路中存活的SNC神经元和其他下游神经元的活性变化。的确,在大鼠骨纹状体途径的部分病变之后,存活的SNC DA神经元是多动(1),释放额外的多巴胺(2-5),并减少了多巴胺再摄取(2)。DA神经元的巨大丧失(1、6、7),线粒体复合物I活性的完全丧失以及线粒体PD蛋白PINK1(9)的损失也会导致爆发的爆发增加(10,11)。因此,在广泛的损失或压力的情况下,DA神经元易于改变活性,这可能与电路水平的变化有关。例如,灵长类动物模型的证据表明,在PD中,丘脑下核向SNC发送了谷氨酸能投射的核(12)。虽然系统级变化可能是补偿性的,并且部分恢复了多巴胺水平和整体运动功能,但它们也可能带来不利的后果。此外,包括α-突触核蛋白,LRRK2,Pink1和Parkin在内的关键PD疾病蛋白可以影响神经活动水平(13-18),进一步支持了神经活动变化也可能有助于疾病病理生理学的观念。健康的SNC多巴胺神经元由于其起搏活动,有效的Ca 2+泵送,无髓髓纤维或髓鞘不良的纤维(19、20)和大轴突轴(21),因此具有巨大的能量需求。这一巨大的能量要求可能解释了其内在脆弱性,包括线粒体损伤,包括复杂的I破坏(8、22、23)以及线粒体动力学的障碍(24)和周转率(25)。据估计,线粒体在SNC DA神经元中消耗的氧的一半致力于支持神经元释放和发射器释放(26)。因此,与疾病相关的应激结合在一起,即使是轻微多动症的代谢影响可能会触发或加速SNC DA神经元的变性。支持该假设,抑制STN的兴奋性输入可保护SNC DA神经元从6- OHDA和MPTP毒性(27,28)。
