使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
氢能技术是实现交通领域脱碳的重要推动因素。它们保持了与传统发动机相同的运行灵活性:长续航里程、短加油时间。氢气特别适合重载、高能耗和恶劣的操作条件。车辆可以在所有气候条件下全天候运行而不会产生能量损失。氢动力汽车已在各种运输应用中投入使用或正在开发中:轻型商用车、乘用车、公共汽车、长途客车、卡车(包括矿车和垃圾车)、半挂车、物料搬运设备、正面吊、无人机(UAV)、自动导引车(AGV)、建筑设备(如挖掘机)、火车(区域旅客列车、调车机、机车)、自行车或场内拖拉机。在海运领域,目前正在考虑基于氢的解决方案(如氨、甲醇、液态有机氢载体 (LOHC) 和合成甲烷)以及液态氢或压缩氢。
H ∞ 滤波器针对的是噪声过程统计数据不确定的情况,此时我们的目标是最小化最坏情况而不是估计误差的方差 [ 3 , 26 ]。该滤波器限制了将扰动映射到估计误差的传递函数的 H ∞ 范数。然而,在瞬态操作中,会失去所需的 H ∞ 性能,并且滤波器可能会发散,除非每次迭代中都有一些(通常是限制性的)正性条件成立。在集值估计中,扰动向量通过有界集(如椭球)建模 [ 4 , 22 ]。在该框架中,我们试图围绕与观测值和外生扰动椭球一致的状态估计构建最小椭球。然而,由此产生的稳健滤波器会忽略任何分布信息,因此倾向于过于保守。 [19] 首次研究了一种对更一般形式的(基于集合的)模型不确定性具有鲁棒性的滤波器。该滤波器以迭代方式最小化标准状态空间模型附近所有模型的最坏情况均方误差。虽然该滤波器在面对较大不确定性时表现良好,但在较小不确定性下可能过于保守。[25] 提出了一种广义卡尔曼滤波器,它可以解决这个缺点,在标准性能和最坏情况性能之间取得平衡。通过最小化矩生成函数而不是估计误差平方的均值,可以得到风险敏感的卡尔曼滤波器 [24]。这种风险敏感的卡尔曼滤波器等同于 [12] 中提出的分布鲁棒滤波器,它最小化标准分布周围的 Kullback-Leibler (KL) 球中所有联合状态-输出分布的最坏情况均方误差。 [27] 研究了更一般的 τ -散度球的扩展。
花粉粒的数量在物种内和物种间存在差异。然而,与雄蕊细胞分化方面的研究相比,人们对这一数量性状的分子基础知之甚少。最近,通过拟南芥的全基因组关联研究,分离出了第一个负责花粉数量变异的基因 REDUCED POLLEN NUMBER1 (RDP1),并表现出自然选择的特征。该基因编码酵母 Mrt4 (mRNA 转换 4) 的同源物,它是大核糖体亚基的组装因子。然而,没有进一步的数据将核糖体功能与花粉发育联系起来。在这里,我们使用标准 A. thaliana 登录号 Col-0 表征了 RDP1 基因。由 CRISPR/Cas9 产生的移码突变体 rdp1-3 揭示了 RDP1 在开花中的多效性作用,从而表明该基因是花粉发育以外的多种过程所必需的。我们发现,天然的 Col-0 等位基因导致 Bor-4 等位基因的花粉数量减少,这是通过定量互补测试评估的,该测试比转基因实验更敏感。结合通过序列比对确定的 Col-0 中的历史重组事件,这些结果表明 RDP1 的编码序列是导致自然表型变异的候选区域。为了阐明 RDP1 参与的生物学过程,我们进行了转录组分析。我们发现负责核糖体大亚基组装/生物合成的基因在差异调控基因中富集,这支持了 rdp1-3 突变体中核糖体生物合成受到干扰的假设。在花粉发育基因中,编码碱性螺旋-环-螺旋 (bHLH) 转录因子的三个关键基因(ABORTED MICROSPORES ( AMS )、bHLH010 和 bHLH089 )以及 AMS 的直接下游基因在 rdp1-3 突变体中下调。总之,我们的结果表明核糖体通过 RDP1 在花粉发育中发挥特殊功能,RDP1 含有受选择的天然变体。
碱基编辑器是 RNA 引导的脱氨酶,可实现位点特异性核苷酸转换。这些 Cas 脱氨酶融合蛋白的靶向范围主要取决于靶基因座处原间隔区相邻基序 (PAM) 的可用性,并且仅限于 CRISPR-Cas R 环内的窗口,其中单链 DNA (ssDNA) 可供脱氨酶接触。在这里,我们推断 Cas9-HNH 核酸酶结构域在空间上限制了 ssDNA 的可及性,并证明省略该结构域会扩大编辑窗口。通过将 HNH 核酸酶结构域与单体或异二聚体腺苷脱氨酶交换,我们还设计了具有 PAM 近端移位编辑窗口的腺嘌呤碱基编辑器变体 (HNHx-ABE)。这项工作扩展了碱基编辑器的靶向范围,并提供了明显更小的碱基编辑器变体。此外,它还提供了 Cas9 蛋白质工程的未来潜在方向,其中 HNH 结构域可以被作用于 ssDNA 的其他酶取代。
根据此指导和时间范围预期,本文将有助于委员会指导公用事业公司为未来高 DER 实现电网现代化,并帮助委员会考虑一系列配电系统运营商的角色和职责,以确定最能快速发展电网能力和运营的 DSO 模型,以整合更高水平的 DER,实现该州 100% 清洁能源的目标。高 DER 程序的大部分范围旨在短期内进行更改,以改善配电规划和运营,从而实现 DER 的社会和费率价值最大化。本文通过对长期结构和运营变化的研究来补充这些短期努力。未来电网研究的一些结果可以为电网规划和运营的短期变化提供信息,但其中大部分必然侧重于长期变化。
摘要 患有压力相关衰竭症 (ED) 的患者存在记忆力和执行功能问题。这些问题与前额皮质 (PFC) 的异常活动有关。我们研究了 ED 患者 (n = 20,16 名女性) 在长时间心理活动期间的认知表现和 PFC 功能活动,ED 患者自确诊以来的平均持续时间为 46 ± 23 个月,并与健康个体 (n = 20,12 名女性) 进行了比较。按顺序进行了六个神经心理学测试,重复一次。所有测试均采用了脑成像技术、功能性近红外光谱 (fNIRS)。两组之间在随时间的变化方面没有差异,即第一个和第二个测试块之间的差异。在 Stroop - Simon 测试中,对照组表现出额皮质的功能活动更高。在左腹外侧 PFC 中,我们观察到对照组在不一致试验中的活动比一致试验中增加,而在 ED 患者组中没有发现任何变化。在处理速度任务期间,只有 ED 患者在右背外侧 PFC 中表现出更高的功能活动。ED 患者报告的主观能量水平较低,并且在心理控制任务中的表现也比健康人差。总之,ED 患者与对照组相比表现出改变的功能活动,表明 ED 患者在前额皮质中处理信息的方式不同,但重测设计显示,在 2 1 = 2 小时过程中,功能活动没有变化。
微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
结果:在将肥胖症患者与健康对照组进行比较时,α多样性在眼表面菌群的丰富度或均匀度没有明显差异(香农指数,p = 0.1003)。但是,β多样性突出了这两组的微生物群组成中的显着方差(Anosim,p = 0.005)。lefse分析表明,肥胖症患者的delftia,cutibacterium,cutibacterium,cutibacterium,culobacterium,caulobacteraceae,caulobacteraceae未分类,comamonas和卟啉症显着增加(p <0.05)。使用PICRUST2的预测分析强调了肥胖症患者的某些代谢途径的显着增强,特别是通过细胞色素P450(CYP450),脂质代谢和脂质代谢的代谢,尤其是异种疗法,脂质代谢和类似的受体信号途径(NOD) - 样型(NOD) - 样型(NOD)。
