1 Quantum设备中心,Niels Bohr Institute,哥本哈根大学,2100哥本哈根,丹麦2号哥本哈根2洛伦兹研究所和莱顿高级计算机科学研究所,莱顿大学,P.O。Box 9506,2300 Ra Leiden,荷兰3量子旋转中心,物理系,挪威科学与技术大学,NO-7491 Trondheim,挪威4 Qdevil,Qudevil,Qudevil,Quantum Machines,Quantum Machines,2750 Ballerup,Ballerup,Ballerup,Ballerup,丹麦5号工程学系,牛津大学,牛津大学,牛津大学,牛津大学,国王6 3pj and osteric of Actire of Actire of Burd of Accient and Intercoment of Thressicatik印第安纳州拉斐特47907,美国7 Birck纳米技术中心,普渡大学,西拉斐特,印第安纳州47907,美国8 Elmore电气和计算机工程学院,Purdue University,Purdue University,West Lafayette,Indiana 47907Box 9506,2300 Ra Leiden,荷兰3量子旋转中心,物理系,挪威科学与技术大学,NO-7491 Trondheim,挪威4 Qdevil,Qudevil,Qudevil,Quantum Machines,Quantum Machines,2750 Ballerup,Ballerup,Ballerup,Ballerup,丹麦5号工程学系,牛津大学,牛津大学,牛津大学,牛津大学,国王6 3pj and osteric of Actire of Actire of Burd of Accient and Intercoment of Thressicatik印第安纳州拉斐特47907,美国7 Birck纳米技术中心,普渡大学,西拉斐特,印第安纳州47907,美国8 Elmore电气和计算机工程学院,Purdue University,Purdue University,West Lafayette,Indiana 47907
摘要 我们证明了非相对论量子力学的公式可以从一个扩展的最小作用量原理中推导出来。这个原理可以看作是经典力学最小作用量原理的扩展,因为它考虑了两个假设。首先,普朗克常数定义了一个物理系统在其动力学过程中为可观测所需表现出的最小作用量。其次,沿经典轨迹存在恒定的真空涨落。我们引入了一种新方法来定义信息度量来测量由于真空涨落引起的额外可观测性,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够恢复位置表象中的基本量子公式,包括不确定性关系和薛定谔方程。在动量表象中,可以应用同样的方法得到自由粒子的薛定谔方程,而对于具有外部势的粒子仍需要进一步研究。此外,该原理在两个方面带来了新的结果。在概念层面,我们发现真空涨落的信息度量是玻姆量子势的起源。尽管二分系统的玻姆势不可分,但底层的真空涨落是局部的。因此,玻姆势的不可分性并不能证明两个子系统之间存在非局部因果关系。在数学层面,使用更一般的相对熵定义量化真空涨落的信息度量会得到一个取决于相对熵阶数的广义薛定谔方程。扩展的最小作用原理是一种新的数学工具。它可以应用于推导其他量子形式,例如量子标量场论。
在国内和国际文献中,在使用混合储能系统来减轻风能波动的策略方面取得了广泛的进步。Long [13]提出使用小波分解理论将风电场的原始输出功率分解为多个尺度,并采用模糊控制,以优化混合储能系统的初始功率分配。但是,小波分解层的选择会影响分解结果。Xianjun和Jia [14-15]提出了一种改进的小波包抑制策略,该策略不仅符合风电网连接标准,而且还降低了电荷分离开关频率,从而增强了存储系统的经济活力。Zhang [16]提出了平均滑动和EMD,以获得网格连接和储能功率信号,目的是最大化净福利以完成储能系统配置。guo [17]提出了通过考虑最新电荷(SOC)并配置额定功率和容量和容量和容量来分解混合能源系统功率。使用自适应变分模式分解(VMD)算法,Xiao [18]通过结合超级电容器和氢储罐的状态来分配内部功率,从而自适应地分解风力。fang [19]使用VMD和Wigner – Ville分布算法来处理原始功率数据,并应用了混乱粒子群优化算法来解决两阶段的每月和日前优化问题。Xidong [20]提出了一种方法,该方法将最佳的指数平滑与Ceemdan结合在一起,以获得与网格连接和存储的功率,从而促进了存储系统中的内部功率分配。
在物理学中长期以来已经知道,当光被限制在很小的体积中时,可能会发生有趣的现象[1]。最著名的自发发射在腔中被光扩增,从而导致称为激光器的集体光子模式[2,3]。自从这一发现以来,对光腔的丰富研究传统已经发展出了一些开创性和基本发现。在当前的讨论中,特别有趣的是,光腔内的光线相互作用可以大大增强[4],因此,当物质被放置在光腔中时,双重光 - 亮点特征的准粒子可以形成,因此称为polaritons。已经产生了这些极化子的大量结果[5],并且仍在深入研究它们的形成和表征,并面临许多挑战。例如,在这一研究中,一个很大的里程碑是实现了极化玻色 - 因子凝结物[6,7]。最近开发的想法试图将焦点从极地转变为轻度驱动现象转向其形成对托管材料的作用。在一个称为极化化学的开创性领域中[8]光态状态用于增强和控制化学反应。形成极化子已通过改变势能格局来增强分子中的反应途径[9-14]。在没有实际光子的情况下。这种真空腔材料工程与通常广泛研究的集体效应和驱动(激发)偏振状态的凝结的情况形成鲜明对比。至关重要的是,在极化化学中表明,在强的耦合方案中,腔体中电磁场的真空波动可能会逐渐到电子结构的过渡,因此在黑暗腔中可以发生新的诱发现象,即类似地,与限制光子模式的空腔量子量子 - 电动力学耦合可以通过强烈耦合到真空波动的量子材料的性质进行更改。正式,根据自2010年初以来所做的工作,作为由欧洲研究委员会资助的两个主要项目的一部分(Dynamo 5和
超导体中的涡旋可以帮助识别出现现象,但是涡流的基本方面(例如它们的熵)仍然很众所周知。在这里,我们通过测量磁耐药性和对超薄纤维(≤2个单位细胞)的磁性抗性和Nernst效应,研究了不足的BI 2 SR 2 CACU 2 CACU 2 O 8+X中的涡旋熵。我们从具有不同掺杂水平的样品上的磁传输测量中提取伦敦穿透深度。它揭示了超级流动相位刚度ρs与超级传导过渡温度t c线性缩放,直至极不足的情况。在相同批次的超薄纤维上,我们通过芯片温度计测量Nern的效果。一起,我们获得了涡旋熵,并发现它用t c或ρs呈指数衰减。我们进一步分析了高斯超导波动框架中t c上方的nernst信号。在二维极限中电气和热电测量的组合提供了对高温超导性的新见解。
光伏电池式电容器水泵系统及其在波动的环境条件下的可靠性madhumita das抽象的杂交能量存储的光伏水泵系统可在高度波动的辐射下在云或部分云云时提高系统性能和可靠性。这项研究的主要目的是在太阳能水泵系统中找到添加双储能,电池和超级电容器的可靠性和有效性。在这项研究中,已经在测试系统上分析了累积的泵效率,系统效率和水抽动成本,该测试系统由12 V,9 AHR电池,210 F超级电容器库和12 V,14.4 W,可潜水性离心水泵的动态泵为2m,以估算系统尺寸的最佳PV模块。发现,太阳辐射的每单位变化系统变化的流量变化速率范围为0.051至0.092 l/hr/w/m 2。与直接耦合的水泵系统相比,流速的变化有了显着改善,这证明了其在波动辐射下的潜力。水抽成本在印度卢比1.51至1.59之间。建议使用PV式式式水上泵水抽水系统用于农业应用中的部分和多云的日子。
摘要本文旨在了解石油市场中时变地缘政治风险的一般平衡影响。回答这个问题需要同时对几个功能进行建模,包括宏观经济灾害和地缘阳场驱动的石油生产灾难,石油储存和预防性储蓄,以及内源性确定对产出和油价的不确定性。我们发现石油价格不确定性往往是由宏观经济不确定性驱动的。在地缘政治驱动的主要石油供应中断的可能性上发生了变化,对石油和宏观经济的价格产生了有意义的影响,但是产生的石油价格不确定性并不是宏观经济汇总波动的主要驱动力。关键字:地缘政治风险,宏观经济风险,时间变化的不确定性,罕见灾难,石油,内生性,冲击传播,经济波动,预防性储蓄,库存分类:E13,E22,E22,E32,E32,Q43,Q43
摘要 本文旨在了解石油市场中随时间变化的地缘政治风险的一般均衡效应。回答这个问题需要同时对几个特征进行建模,包括宏观经济灾难和地缘政治驱动的石油生产灾难、石油储存和预防性储蓄,以及产出和石油价格不确定性的内生决定因素。我们发现,石油价格不确定性往往是由宏观经济不确定性驱动的。地缘政治驱动的重大石油供应中断概率的变化对石油价格和宏观经济有重大影响,但由此产生的石油价格不确定性并不是宏观经济总量波动的主要驱动因素。关键词:地缘政治风险、宏观经济风险、随时间变化的不确定性、罕见灾害、石油、内生性、冲击传播、经济波动、预防性储蓄、库存 JEL 分类:E13、E22、E32、Q43
魔术角扭曲的双层石墨烯(MATBG)在理论上和体验上都广泛探讨了一个合适的平台,可用于包括铁磁剂,电荷顺序,破碎的对称性和非常规的超导性的富相图。在本文中,我们研究了MATBG中远程电子相互作用,自旋爆发和超导性之间的复杂相互作用。通过为MATBG采用低能模型,该模型捕获了频带的正确形状,我们探索了短期和长距离相互作用对自旋闪光的影响及其对MATRIX随机相位的超导(SC)成对角度的影响(Matrix RPA)。我们发现,SC状态特别受到远程库仑相互作用的强度影响。有趣的是,我们的矩阵RPA计算表明,与现场相比,系统可以通过增加远距离相互作用的相对强度来从磁相转移到SC相。这些发现强调了电子 - 电子相互作用在塑造MATBG的有趣特性中的相关性,并提供了设计和控制其SC相的途径。