放射学技术仍然是乳腺癌早期检测的主要方法,对于从癌症中获得有利的结果至关重要。但是,需要更敏感的检测方法来补充放射学技术,以增强早期检测和治疗策略。使用我们最近建立的培养方法,该方法允许传播腔原性的正常和癌性乳房上皮细胞,流式细胞仪表征和基因组测序,我们表明可以在母乳中检测到癌细胞。细胞从乳腺癌中衍生而来的乳腺癌富含CD49F+/EPCAM-,CD44+/CD24-和CD271+癌症干细胞(CSC)。这些CSC在HDAC6的细胞质保留结构域,MORF4L1中的停止/增益插入以及SWI/SNF复合物分量Smarcc2中的缺失突变。csc对HDAC6抑制剂,BET溴ab剂抑制剂和EZH2抑制剂敏感,因为已知SWI/SNF复合成分的突变会增加对这些药物的敏感性。来自其他10名未知患有乳腺癌的女性的母乳的细胞中,其中两个含有富含CSC表型的细胞,并在NF1或KMT2D中携带突变,这些突变经常在乳腺癌中突变。具有NF1突变的母乳源性细胞在CDKN2C,PTEN和REL基因中还带有拷贝数变化。此处描述的方法可以使快速癌细胞表征,包括妊娠/产后乳腺癌的驾驶员突变检测和治疗性筛查。
结肠微生物组生产短链脂肪酸(SCFA)对人类健康有许多好处,包括维持上皮屏障功能,结肠炎的抑制和对癌变的保护。尽管具有治疗潜力,但目前尚无最佳方法来提升结肠微生物组的SCFA合成。在这项研究中,研究了该应用的Poly(d,l-乳肽-CO-糖苷)(PLGA),因为假设结肠微生物群可以将PLGA与其乳酸单体分类,这将促进居住的Microbiota的SCFAS合成。在人类结肠的高级模型中筛选了两个级别的喷水PLGA,并在乳酸推注控制范围内进行筛选,称为M-Shime®系统。在来自三个健康人的微生物群存在下,高分子量(MW)等级是稳定的,但发现低MW PLGA(PLGA 2)已代谢。这种微生物降解导致乳酸在48小时内持续释放,并增加了丙酸SCFAS和丁酸盐的浓度。此外,与未处理的对照相比,有害铵的微生物合成显着降低。有趣的是,发现两种类型的PLGA都以供体特异性方式影响腔和粘膜微生物群的组成。一个发炎的结肠上皮的体外模型还显示了聚合物影响促炎和抗炎标记物的表达,例如列白鸟素8和10。这项研究的结果揭示了PLGA对肠道中酶促代谢的敏感性,这可以用于结肠SCFA的治疗升高。
前列腺癌是一种高含量的男性癌症,它取决于核激素受体,雄激素受体(AR)的活性。由于正常前列腺发育和前列腺癌进展所必需的AR,因此前列腺癌可能从AR依赖性生物学过程中的扰动中演变,以维持专业的腺功能。当然,原型的例子是使用前列腺特异性抗原(PSA),这是正常前列腺分泌组的器官特异性成分,作为前列腺癌的生物标志物。此外,局部前列腺癌的特征在于低增生指数和与多焦点疾病模式排列的一系列体细胞突变。我们和其他人已经确定了许多依赖AR的生物学过程,并在重要的腺过程中表示异常。腺体的特征是代谢活性的高率,包括蛋白质合成,并由共依赖性过程(例如糖基化,细胞器生物发生和囊泡运输)支持。在合成代谢和蛋白质折叠/加工中的损害不可避免地会对腺细胞,尤其是腔内上皮细胞施加蛋白毒性和氧化应激,其分泌是其主要功能。随着癌症的发展,在缺氧条件下对糖酵解和合成代谢活性的负面反馈影响受损,并且由于PI 3-激酶/MTOR活性的失调而导致的蛋白质合成增强。在这篇综述中,我们将重点介绍支持癌症发展的AR调节组的组成部分,以及关注展开的蛋白质反应和MTOR活性调节剂的腺功能。
结肠微生物组生产短链脂肪酸(SCFA)对人类健康有许多好处,包括维持上皮屏障功能,结肠炎的抑制和对癌变的保护。尽管具有治疗潜力,但目前尚无最佳方法来提升结肠微生物组的SCFA合成。在这项研究中,研究了该应用的Poly(d,l-乳肽-CO-糖苷)(PLGA),因为假设结肠微生物群可以将PLGA与其乳酸单体分类,这将促进居住的Microbiota的SCFAS合成。在人类结肠的高级模型中筛选了两个级别的喷水PLGA,并在乳酸推注控制范围内进行筛选,称为M-Shime®系统。在来自三个健康人的微生物群存在下,高分子量(MW)等级是稳定的,但发现低MW PLGA(PLGA 2)已代谢。这种微生物降解导致乳酸在48小时内持续释放,并增加了丙酸SCFAS和丁酸盐的浓度。此外,与未处理的对照相比,有害铵的微生物合成显着降低。有趣的是,发现两种类型的PLGA都以供体特异性方式影响腔和粘膜微生物群的组成。一个发炎的结肠上皮的体外模型还显示了聚合物影响促炎和抗炎标记物的表达,例如列白鸟素8和10。这项研究的结果揭示了PLGA对肠道中酶促代谢的敏感性,这可以用于结肠SCFA的治疗升高。
摘要。- 目的:肾毒性和肝毒性的发生是临床实践中的主要关注点。这项研究检查了给肾上腺素和肾脏损伤造成顺铂引起的肾脏损伤和伴随损害的保护性保护作用。此外,该研究还研究了施用脂肪衍生的中囊干细胞(ADMSC)的潜在保护作用,以抵消顺铂诱导的肾脏和肝损伤的有害作用。材料和方法:将雄性Sprague-Dawley大鼠分为三组:Normal Control,Cisplatin + Saline和Cisplatin + Admsc。顺铂用于诱导毒性,并将ADMSC固定为潜在的治疗干预措施。生化参数和组织病理学变化。进行统计分析。结果:顺铂增加了疟原虫(MDA),肿瘤坏死因子ALFA(TNF-AL-FA),IL-6,IL-6,丙氨酸转氨酶(ALT),肌酐,Galectin-3,组织生长因子β1(TGF-BE-BE-BE-TA 1)(与正常对照组相比)。顺丁 - 铂MSC降低了这些水平。组织性疾病表明,顺铂会引起肾小管上皮坏死,腔内坏死碎屑,tubular膨胀,间质性炎症,肝脏肌体和中静脉炎,中静脉扩张,营养性,坏死,坏死和细胞质液体化。adm-sc施用显着降低了组织病理变化。MSC治疗表现为保护性EF-结论:这些发现突出了间充质干细胞(MSC)给药的潜在治疗益处,从而缓解顺式铂诱导的肾毒性和肝毒性。
迫切需要改善膀胱癌患者的治疗前景,尤其是侵袭性尿路上皮癌 (InvUC) 患者,这种癌症 50% 的病例是致命的。改善 InvUC 患者的治疗效果可能来自多个方面的进步,包括新兴免疫疗法、靶向疗法和新药物组合;根据分子亚型、免疫特征和其他特征选择最有可能对特定治疗产生反应的患者;以及预防、早期检测和早期干预。所有这些方面的进展都需要临床相关的动物模型来进行转化研究。动物模型应具有决定抗癌药物在人类中成功或失败的关键特征,包括肿瘤异质性、遗传-表观遗传串扰、免疫细胞反应、侵袭性和转移性行为以及分子亚型(例如管腔、基底)。实验动物模型虽然在膀胱癌研究中必不可少,但不具备这些集体特征来准确预测人类的结果。然而,这些关键特征在宠物狗中自然发生的 InvUC 中也存在。犬类 InvUC 在细胞和分子特征、分子亚型、免疫反应模式、生物行为(转移部位和频率)以及对治疗的反应方面与人类肌肉浸润性膀胱癌非常相似。因此,狗可以提供高度相关的动物模型来补充膀胱癌新疗法研究中的其他模型。对患有 InvUC 的宠物狗进行临床治疗试验被认为是一个三赢的局面;每只狗都能从有效的治疗中受益,治疗结果有望帮助其他狗,而治疗结果有望转化为人类更好的治疗结果。此外,狗患 InvUC 的品种相关风险很高(例如,苏格兰梗犬的风险增加了 20 倍)
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
自然衍生的糖胺聚糖(GAG)的化学修饰扩大了其在软组织修复和再生医学中应用的潜在效用。在这里,我们报告了一种新型的交联硫酸软骨素(〜200至2000千座)的制备,该软骨素既可以溶于水溶液,又可以微过滤。我们将这些材料称为“超级收集”。可以进一步将这些材料与不同的捕获剂结合在一起,以进一步修改聚合物性能并增加新功能。代表性材料(GLX-100)在膀胱炎/膀胱疼痛综合征(IC/BPS)的金标准动物模型中表现出膀胱不渗透性持久性不渗透性。对动物膀胱的组织学检查,该记者认为GLX-100的停留时间优于硫酸软骨素(目前用于IC/BPS患者临床治疗的产物)。正如预期的那样,这种新型的交联插入生物聚合物仅限于膀胱壁的腔表面。在这种交流中,我们描述了一种简单而多功能的综合,用于用于软组织修复的交联糖氨基 - 糖(GAG)生物聚合物。硫酸软骨素(〜12 kD)交联以形成可溶性和可滤物的可溶性聚合物,约200至2000 kD分子量。此处介绍的合成允许控制分子量,同时避免形成扩展的块凝胶。此外,该过程通过选择捕获剂可以进一步对超级捕获的化学修改。已经使用了一组代理商,证明了具有多种功能的超级捕捞家族的准备。我们可以优化聚合物特性,调整对各种组织的粘附,添加记者,并与周围组织的生物化学与肽和其他生物活性剂一起。
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
肠道是在大西洋鲑鱼免疫系统中起重要作用的屏障器官。免疫功能分布在含有多种免疫细胞和其他细胞类型的弥漫性肠道淋巴组织中。将肠道转录组与其他器官和组织的转录组进行比较,提供了op or的性能,以阐明肠道的特定作用及其与身体其他部位的关系。在这项工作中,对使用全基因组DNA寡核断裂片微阵列获得的大量数据进行了荟萃分析。肠子以脾脏和头肾后的免疫基因表达水平排名第三。抗原表现和先天抗病毒免疫的活性在肠道中高于任何其他组织。通过比较转录组曲线,肠显示了与g,头肾,脾,表皮和嗅觉玫瑰花结(降序)的最大相似性,这强调了Pe Ripheral粘膜系统的完整性及其与主要淋巴机构的牢固连接。t细胞特异性基因在这些组织中共表达的基因中占主导地位。CD8 +(86个基因,r> 0.9)的转录特征包括免疫耐受性foxp3的主基因和其他负调节剂。在一个单独的实验中比较了睾丸中不同段的不同段,其中在几个基因的官能团中发现了沿着肠道的表达梯度。在幽门肠和远端肠道中,腔内和细胞内(溶酶体)蛋白酶的表达明显更高。类固醇代谢和细胞色素P450在幽门肠和肠中高度表达,而远端肠道具有与维生素和铁代谢有关的远端基因。抗原呈现蛋白质和免疫球蛋白的基因表达表现出向远端肠的逐渐增加。