摘要 - 已经研究了使用光电仪和次级电子排放对相邻太空飞行器的无触觉感测,用于地球同步(GEO)应用。随着越来越多的任务发送到Cislunar空间,该技术也可以扩展到那里。但是,Cislunar环境的复杂性给无触摸潜在的传感技术带来了新的挑战。一个主要问题的时间比地理区域短,而在Cislunar地区可能低至10 m。因此,研究了一个在月球周围短德比区域中带电的航天器周围的电力和电势场的模型。呈现了真空(拉普拉斯)和debye -hückel模型,并使用有效的debye长度来扩展模型并更好地代表环境。先前已经在低地球轨道(LEO),安静的地理和小行星环境中研究了有效的Debye长度,但在Cislunar等离子体环境中尚未发现,并且在远距离距离的距离上可以使用电子排放率更高,比预期的距离更大。一旦建立了有效的DEBYE长度和相关模型,通过在NASCAP-2K中的计算(一种飞船 - 系数相互作用软件)中探索了有效的Debye长度和无触摸潜在传感功能之间的关系。然后使用所开发的方法来确定在具有不可忽略的静电势屏蔽的Cislunar地区被动和主动无触摸电势感应是可行的。
Thomas Joyce 亚利桑那大学天文系、物理系月球与行星实验室 Ryland Phipps 亚利桑那大学航空航天与机械工程系 Craig Jacobson 亚利桑那大学月球与行星实验室 Tanner Campbell 亚利桑那大学航空航天与机械工程系 / 月球与行星实验室 Adam Battle 亚利桑那大学月球与行星实验室 Daniel Estévez 博士 独立研究员,西班牙 Roberto Furfaro 教授 亚利桑那大学系统与工业工程系、航空航天与机械工程系 Vishnu Reddy 教授 亚利桑那大学月球与行星实验室
出版物: [1] N. Rodriguez-Alvarez 等人,“前馈神经网络去噪应用于 Goldstone 太阳系雷达图像”,遥感,2022 年 2 月 [2] CG Lee 等人,“地月空间碎片雷达的能力和可行性”,IEEE 航空航天 2023 [3] Y.-M. Yang 等人,“使用深空网络和开环跟踪测量实现地月目标检测”,IEEE 航空航天 2023 [4] CG Lee 等人,“带有 GSSR 的地基地月空间碎片雷达”,IGARSS 2023 - 2023 IEEE 国际地球科学与遥感研讨会,2023 年 [5] Y.-M. Yang 等人,“背景杂波对使用深空网络开环跟踪测量进行地月目标检测的影响”,IGARSS 2023 - 2023 IEEE 国际地球科学和遥感研讨会,2023 年 PI/任务经理。联系信息:Clement Lee 818-354-5587 clement.g.lee@jpl.nasa.gov
其发展。太空实体,例如太空运输基础设施和技术的提供商或太空设备制造商,将从对空间能力和服务的需求激增中获利。这种需求不仅会受到月球经济活动的增加的刺激,而且还会受到自给自足的月球经济所释放和创造的未来机会的刺激,例如对其他星球进行更深层太空探索的市场。非太空实体是月球经济运作的不太明显的受益者;然而,他们仍然会从其增长中受益匪浅。这些与太空技术有着新兴联系的地面行业(采矿、汽车和建筑公司)可能构成月球经济的驱动生态系统,因为它们成为太空溢出效应的下游受益者
准确的轨道测定对于Cislunar空间监测至关重要。在低地球轨道(LEO)中用于OD的传统技术可能无法在Cislunar空间中有效地工作,因此需要新的方法来估计这种环境中机动目标的状态。本文提出了一种利用物理知情神经网络(PINN)的新方法,这是一种独特的神经网络类型,旨在解决由参数微分方程控制的前进和反问题。OD问题被视为一个动态问题,其目的是从观察数据开始解决管理微分方程。该系统能够使用仅被动角度观察来估计目标状态,而无需任何初始猜测或集成。如果考虑操纵目标,包括运动方程中未知的动态组件,则可以在观察范围内的任何时候估算目标状态和操纵者本身。该方法均可在Space4 Center提供的CISLUNAR对象和合成生成的数据的两个实际角度观察结果上进行测试。本文得出的结论是,所提出的方法有可能提高Cislunar空间中的OD准确性,并且可能是传统方法的有希望的替代方法。
在地面域中同样重要,因此从业者继续尝试延长可以将特定轨道编号保留到特定目标的时间长度。在地面域中发现有用的一种方法称为特征辅助跟踪(FAT)(有时在文献中也称为签名辅助跟踪(SAT)或分类辅助跟踪(CAT))。脂肪是一种在雷达系统中最常见的技术,尽管它也在光学跟踪系统中使用了。在脂肪中,正常的监视模式通过雷达模式大小中断,该模式仅产生仅取决于目标相对于雷达传感器的姿势和速度的测量值。模式,例如合成孔径雷达(SAR)和高范围分辨率雷达(HRR),因为一旦考虑到姿势和LOS速度,它们就会产生一些不变的签名。可以在[1]中找到有关这种方法的一种实现的详细讨论。一种简单的方法来了解问题以及如何使用脂肪来帮助解决该问题,如图1。两个目标接近交叉点,并结束一段时间。也许其中一个或多个停在十字路口,让另一个人不受阻碍。对于接地移动目标指示器(GMTI)雷达模式,这是用于接地监视雷达的典型度量观察模式,这意味着一个或两个目标在停止时消失在混乱中。即使它们足够放慢,它们也会消失在混乱中。某个时候,目标到达另一个十字路口并通过不同的路径退出。由于两个目标都可能已经停止或至少足够缓慢地移动,并且由于它们暂时靠近一段时间,并且雷达仅在定期进行定期对目标进行采样,而不是仅根据度量观测值来确定沿哪个路径沿着哪个目标撤离。如果使用脂肪,则目标离开交叉点并进行了足够分离(取决于传感器的分辨率)后,将采用HRR模式并用于与为每个目标维护的签名库匹配。假设两个目标的匹配性能足够不同,则可以解决歧义,并且如果需要,可以将适当的轨道编号重新分配到这些目标时。
我们不仅从技术的性能,而且还从Cislunar域独有的操作约束来优化分布式传感器优化问题方面显示了进度。代表这两个因素的模型已组装到软件包中,以实现基于模型的系统工程(MBSE)分析问题。为了在潜在模型的库中进行优化研究,我们进一步开发了可快速可配置的多学科分析和优化(MDAO)建模框架。MDAO框架使用面向对象的编程技术来标准化模型接口,并允许将它们集成到NASA的OpenMDAO软件包中扩展的统一优化环境中。在优化阶段,该MDAO系统利用遗传算法就所需的操作绩效指标提供了技术和设计的最佳选择。最终结果是一个模块化软件包,可用于在当前和未来的Cislunar技术和设计范围内执行优化。
1 图卢兹大学天体物理和行星学研究所,法国图卢兹 CNRS、UPS、CNES,2 ESTEC、ESA,荷兰诺德维克,3 比利时皇家空间航空研究所,比利时布鲁塞尔,4 瑞典空间物理研究所,瑞典基律纳,5 RAL Space,STFC,卢瑟福阿普尔顿实验室,英国牛津郡迪德科特,6 穆拉德空间科学实验室,伦敦大学学院,英国多金,7 LATMOS(大气、环境和空间观测实验室),IPSL,法国巴黎,8 TU-Braunschweig,德国布伦瑞克,9 空间天体物理和行星学研究所,INAF,意大利罗马,10 帝国理工学院,英国伦敦,11 空间科学研究所,M ă gurele,罗马尼亚,12大气物理学,CAS,捷克布拉格,13 Scibit,捷克利贝雷茨,14 奥地利科学院空间研究所,奥地利格拉茨,15 法国图卢兹 CNES,16 捷克布拉格查理大学,17 德国哥廷根马克斯普朗克太阳系研究所,18 捷克布拉格天文研究所,CAS,19 Artenum,法国拉蒙维尔圣阿涅,20 ONERA - 法国航空航天实验室,法国图卢兹
本文提出了一种优化问题公式,以通过多航天器监测解决地月空间域感知 (SDA) 的挑战。由于关注点范围广以及动态环境丰富,传统的地球架构设计方法难以满足地月 SDA 的设计要求;因此,越来越需要在地月轨道上部署多航天器系统以实现 SDA。基于多航天器的地月 SDA 架构的设计会产生一个复杂的多目标优化问题,其中必须同时考虑航天器数量、可观测性和轨道稳定性等参数。通过使用多目标隐基因遗传算法,本研究探索了与地月 SDA 问题相关的整个设计空间。演示案例研究表明,我们的方法可以提供针对成本和效率进行优化的架构。