科学技术政策办公室 (OSTP) 是根据 1976 年《国家科学技术政策、组织和优先事项法》成立的,旨在为总统和总统行政办公室内的其他人员提供有关经济、国家安全、国土安全、卫生、外交关系、环境以及资源的技术回收和利用等主题的科学、工程和技术方面的建议。OSTP 领导跨部门科学技术政策协调工作,协助管理和预算办公室每年审查和分析联邦预算中的研究和开发,并作为总统就联邦政府的主要政策、计划和方案进行科学和技术分析和判断的来源。更多信息请访问 http://www.whitehouse.gov/ostp 。
预计月球和地月空间活动将会增加,这带来了安全隐患,也要求加强地月领域的态势感知能力。这些已在多份美国政府文件中有所概述,包括国家空间委员会的《深空探索和发展的新时代》11、美国国家航空航天局与美国太空部队 (USSF) 之间的谅解备忘录 (MOU)、9、太空部队太空顶点出版物 (Spacepower)10 和 2021 年太空工业基础状况报告。3 地月空间系统独特的轨道特性——复杂、通常不稳定的轨道以及围绕拉格朗日点的准稳定晕轨道——对态势感知能力提出了挑战。在地月空间内从一个轨道移动到另一个轨道,以及从地月空间移动到地球静止轨道或日地拉格朗日点,都十分容易,这既为态势感知带来了挑战,也为新颖的任务设计带来了机遇。在本文中,我们描述了对地月安全至关重要的任务类型,重点关注技术差距和需求,并推荐了国家层面所需的具体政策和技术开发,以确保美国在地月领域的利益安全。
•固定位置的月球站允许进行差分校正以广播LCN导航消息(预测的卫星轨道位置和时钟偏移)可以减少空间误差(SISE)的信号,从而改善定位性能。
地月空间通常被定义为地球和月球之间的空间体积。这包括近 385,000 公里的半径。有无数种可能的传感器架构可以构建来搜索这个空间。在构建架构时,人们通常对最大化可观测性感兴趣。调度传感器以优化容量的任务以前被认为是与架构设计不同的问题。虽然这些问题可以单独解决,但将这些问题放在一起看待可以为地月空间领域感知 (SDA) 提供强大的工具。昨天的解决方案不足以解决今天的问题。在架构设计中只考虑可观测性已经不够了。在本文中,我们首先研究优化的架构,然后将其与优化的调度相结合,以同时最大化容量和可观测性。我们将使用贪婪算法和遗传算法的变体来实现这一点。
随着民用和军用领域对地月空间的兴趣日益增加,对地月空间物体的空间域感知 (SDA) 的需求也随之增加。地月空间的太空 SDA 具有挑战性,部分原因是难以准确估计观测卫星的位置,而准确估计是有效执行 SDA 任务的必要条件。使用多颗配备低保真度设备的观测卫星有助于缓解这些问题,因为可以将方差较大的多个数据集聚合在一起,以实现与较少高质量测量系统相同或更高的精度。地月周期轨道用于观测星座,目标航天器位于 L1 Halo 轨道上。所有轨道均使用圆形限制三体问题 (CR3BP) 建模。系统工具包 (STK) 用于计算轨道几何形状和角度 - 仅提取测量值以模拟带有光学传感器的观测航天器。然后利用扩展卡尔曼滤波器处理测量数据以估计目标航天器的位置。分析重点是比较不同数量的观测航天器的有效性。模拟结果发现,使用低保真度星座可以达到高保真度星座所达到的性能。
我们分析了将月球传感器测量结果与地月空间传感器在地月拉格朗日点 1 晕轨道上融合的轨道质量性能优势。假设了十几种传感器架构来量化跟踪不同系列地月目标的轨迹估计误差。我们使用了各种几何视角以及仅角度和距离测量。使用无迹卡尔曼滤波器处理度量观测值,底层动力学模型由圆形限制三体运动方程组成。整体轨道质量性能以惯性位置、速度和加速度估计误差的平均值和标准差来表示。结果表明,由四个中纬度窄视野仅角度观察者组成的月球传感器架构可以保持 100% 的轨道保管。对所有地月目标的平均位置 RSS 误差均低于 1 公里。我们发现,增加一个仅基于太空的角度观测者可将平均位置估计 RSS 误差降低五倍。总体而言,最佳架构性能组合包含基于月球和基于太空的角度和范围观测。
现代太空任务越来越多地穿越地月空间,需要扩展空间感知功能。传统的空间域感知 (SDA) 系统最初并非为探测和跟踪地月物体而建造的,这可能需要购置新的传感器系统。每个系统都有许多参数,包括传感类型、高度和平台数量,这些参数可能有所不同。任何“极点位置”的一个关键优势是它的位置远在黄道平面之外,并且提供独特的、在某些情况下是正交的观察几何形状,而这种几何形状迄今为止尚未开发用于操作部署。本文讨论了极点位置轨迹的物理原理、燃料与高度的交换以及技术更新,所有这些都表明在短期内展示极点位置 SDA 能力是可行的。此外,本文设计了一个拟议的原型,使用小型航天器与地面传感器协同工作,并描述了当前可供部署的技术。
1 | 为月球供电:桑迪亚研究人员为未来月球基地设计微电网(续第 4 页) 1 | 受贝壳启发的桑迪亚防护罩可在恶劣环境中保护材料(续第 6 页) 2 | 处理电池损坏的笔记本电脑的新方法 6 | 里程碑和退休人员 8 | 美国国家核安全局剪彩庆祝开业 9 | Hruby Fellow 通过关注最小的细节来解决气候方面的大问题 10 | 让星星重新聚在一起 11 | 博物馆文物中心将展出最大规模的核武器展览 12 | 桑迪亚研究人员将能源公平与能源存储联系起来 13 | 化学家因在物理化学领域做出“重大影响”而获得荣誉 14 | 设施开放,用于跨机构反大规模杀伤性武器培训 15 | 播种,养家糊口
总部位于卢森堡,欧洲太空资源创新中心(ESRIC)通过连接领先的学术,工业和企业家才华来促进太空资源行业的创新和增长。ESRIC的活动基于四个主要支柱:太空资源研发,对经济活动,知识管理和社区管理的支持。于2020年11月启动,ESRIC是卢森堡航天局(LSA)和卢森堡科学技术研究所(LIST)的一项计划,与欧洲航天局(ESA)的战略合作伙伴关系。www.esric.lu
作为这项新计划的一部分,地面演示概念已计划实施。它将开发从风化层识别和捕获到资源提取的端到端流程。墨西哥的专业大学也将受邀参与该项目。这项战略演示将发展原位资源利用 (ISRU) 和墨西哥的能力,为墨西哥未来的太空探索发展和与私营部门的国际合作铺平道路。来自墨西哥的创新技术将为人类在月球上的可持续存在做出贡献。在 AEM 的领导下,Dereum Labs 的技术将成为 ISRU 系统的关键,该系统利用当地的月球资源(如风化层)来提取氧气和金属,或开采水。这些对于维持月球上的生命和提供进一步探索所需的资源至关重要。如果这些技术得到验证,氧气、水和燃料等资源将不需要从地球输送。随着墨西哥技术的加入,可持续地月经济的征程已经开始! “该协议是与墨西哥在太空活动方面开展卓有成效的合作的第一步,”空中客车公司拉丁美洲和加勒比地区负责人维克多·德拉维拉 (Victor de la Vela) 表示。“能够开采和加工月球资源对于维持在月球上的长期生活至关重要。此次合作聚集了拥有最新技术和能力的合适合作伙伴,为月球探索开辟了更清晰的前景。”“在 Dereum Labs,我们设想并致力于星际经济;几年后,今天与太空无关的行业将在月球、火星和更远的地方开展业务,”Dereum Labs 首席执行官卡洛斯·马里斯卡尔 (Carlos Mariscal) 表示。“通过这项协议,墨西哥航天局、空中客车防务与航天公司和 Dereum Labs 共同朝着这一未来迈出了一大步;今天,墨西哥正在为人类在太空的长期存在做出贡献。我们非常激动!”