对Cislunar操作的兴趣增加需要将太空域的意识能力扩展到地球的地球范围内。成功的太空领域意识需要对空间对象行为的知识和分类。此信息可以用作未来和当前任务计划的决策工具。通过发展描述性生活模式来获取空间对象行为的信息的方法。生活的描述模式从空间对象建立了一组预期的动作或运动。这项研究开发了生活的描述性电气化模式,用于在Earth-moon系统中L1和L2 Lagrange点附近重复自然轨迹。a L 2最佳模型预测控制和冲动控制器被实现,以在高层象征的模型中维护所需的轨迹。证明了基于最佳控制的估计器可检测电气维持操作,并实现了一级支持向量分类器,以确定空间对象相对于既定的固定存储模式的空间对象的异常行为。
随着政府和商业航天公司重新关注月球和地月空间,了解在这一空间内航天器和碎片物体的跟踪效果至关重要。这对于主动卫星的空间领域感知 (SDA) 和不受控制物体的飞行安全都很重要。地球轨道上有数以万计的可跟踪物体,而地月空间中的物体可能只有数十个,但地球轨道也是一个传感器非常丰富的环境。各国和各公司花了几十年时间建造跟踪轨道上物体的基础设施。地月空间尚不存在这种基础设施,近年来,研究人员和航天器操作员已开始采用光学跟踪等被动方法来解决地月 SSA 问题。通过地面或空间光学测量估计 GEO 上的航天器状态是一个经过深入研究的问题,并由多家公司和机构实际执行。鉴于低信噪比 (SNR) 观测、月球排斥角、短数据弧和非线性动力学等挑战,在地月空间进行空间跟踪是一个更新颖的问题,这些挑战强调了大多数跟踪滤波器的基本假设和简化。在本研究中,两个地月航天器之间产生角度测量,并根据光学传感器的实际值添加随机角度噪声。这些噪声测量在顺序滤波器中处理,以细化驻留空间物体 (RSO) 随时间变化的 6 维状态和协方差。
月球资源是众多可能改变太空物流的新型商业模式之一。然而,它与地球上的资源竞争,这是一个涉及技术发展和社会经济动态的复杂权衡。这项研究模拟了未来资源生态系统的规模与时间,该生态系统专注于地月空间的勘探用水和卫星加油。我们使用了最近开发的基于系统动力学和情景规划的多方法概念,以描述不确定性。最关键的不确定性包括资源发现的可及性和政府对月球资源的投资,划定了两个特别具有说明性的情景:月球城和阿波罗 2.0——一个美好而资源匮乏的未来。同时,开发了一个具有 7 个相互作用系统的系统动力学模型:勘探、生产、需求、卫星行业、研发、自然资源和政府。它基于其他行业(例如石油)的模型,可以表达这些情景。估计了 25 个变量的不确定性,并使用基于方差的测量方法(包括相互作用效应)在全球范围内对生态系统规模进行了敏感性分析。这些结果表明 (a) 系统紧密耦合,(b) 变量重要性对基线敏感。三个变量至关重要:政府对生产发展的支持、生产公司的再投资以及 GEO 电信卫星行业的增长。鉴于政府对生产能力的大力支持、GEO 卫星的高增长、早期需求和大量初始资源发现,20 年后产生 320 亿美元经济影响的月球资源生态系统是可行的。主要贡献是提出了一个新颖的太空资源行业动态整体模型,展示了如何混合技术和社会经济部分,以及该方法的第一个案例研究。
• 对 EML-1 隐藏区域中的物体进行天体动力学、覆盖范围和辐射测量 • 逐步部署多个站组成的网络,首先在南极站具备初始作战能力 (IOC),并具有持续太阳照射和地球 LOS 进行通信 • 使用月球勘测轨道器 (LRO) VIS、IR 和 LIDAR 地图进行选址 • 源自 Ball CT-2020 星跟踪器的宽视场 (WFOV) 摄像机 • 指向天顶的相关鱼眼摄像机以检测附近和快速移动的物体 • Ball 防尘和干式润滑技术可保护光学器件、太阳能电池板和运动部件 • 我们在 L-CiRIS 热成像摄像机中学到的月球独特的热工程经验将于 2023 年交付到月球南极 • 由 NASA 预先批准的供应商作为商业产品进行月球表面交付 • 将带电粒子、射频和其他有效载荷与摄像机组合在一起的仪器套件,共同完成任务 • 额外科学:悬浮月球尘埃、探路者用于天文观测的大型电光或红外(EOIR)月球观测站
当应用于地月轨道模式时,利用经典的地面和/或太空传感器在近地空间执行空间领域感知 (SDA) 变得越来越困难。因此,地月周期轨道被提出作为填补这一能力空白的一种手段。虽然周期轨道有许多用途,但这项工作评估了各种地月周期轨道在样本 SDA 任务架构中的有效性。具体而言,对地月空间内几种不同类型的周期轨道进行了建模,以评估它们在跟踪/监视围绕 L1 拉格朗日点的 Lyapunov 轨道上均匀分布的两颗假想卫星方面的各自有效性。所分析的轨道是在圆形限制三体问题 (CR3BP) 中建模的。还介绍了在过渡到双圆限制四体问题 (BCR4BP) 时保持相同轨迹所需的推进剂。为了比较从 CR3BP 过渡到 BCR4BP 等更高保真度模型时的轨道维护成本,我们寻求实施多种动力学模型。概念性空间对空间传感器用于确定 SDA 任务周期轨道几何的限制,该限制与范围、能力和太阳/地球/月球排斥角有关。视觉星等用于确定目标是否可见。结果列表与地月 SDA 最有效周期轨道的建议一起呈现。
本研究的目的是部署Delphi专家启发方法,以更好地了解2040年可持续月球哨所所面临的技术和政策挑战,包括现场资源利用率(ISRU)部署的类型和规模。,我们使用四分之一的李克特量表和两个排名练习在后来进行了三轮Delphi调查,并在后来进行了开放的第一轮和特定问题来评估能量技术和抑制因素。为了为我们的潜在参与者提供更多有关其意见的确定性,并提高了参与度,该研究采用了一种三轮方法,该方法传达给了我们的潜在参与者并决定了前Ante。潜在的参与者是从文献和学术网络中确定的,因为那些对以下领域做出了重大贡献的人:ISRU技术,太空架构,空间资格的电力系统和太空探索。该研究在第一轮中确定了研究人员的20个主要主题,并要求参与者对2040年假设的月球哨所的许多陈述进行评分。从小组的回应中,我们确定了2040年的Lunar哨所开发的三个主要技术挑战。开发高功率的基础结构,着陆器和车辆上升能力以及任务架构和技术方法。我们还确定了2040年的农历前哨基地的三个主要政策挑战:(i)我们和全球政治不稳定,(ii)第一个月球着陆的时间范围可能会延长时间范围,以及(iii)太空中核能的政治厌恶。由于电荷载的不确定性,该组对哨所处的精确能量混合物不确定,但人们普遍同意太阳能PV将是重要的贡献者。核电来源是否可能发挥有用的作用被证明是不确定的,一些参与者指出了太空核电系统的政治厌恶。但是,该命题在每个排名位置上都获得了两票,这表明它具有平坦的分布,包括支持者和批评者。
CAPSTONE 是…… • 一颗 12U 立方体卫星,将作为第一颗进入近直线晕轨道 (NRHO) 的航天器,该轨道的目的地是 Gateway,Gateway 是 NASA 的 Artemis 计划的一部分,是绕月前哨。 • 预计将成为第一个在地月空间飞行的立方体卫星。 • 计划使用自己的推进系统耗时 3 个月到达月球周围的目标目的地。 • 计划绕月球这一区域运行至少六个月,以了解轨道特性并进行技术演示。 • 通过验证创新导航技术和验证 NRHO 的动态,帮助降低未来航天器的风险。 • 计划于 2021 年搭载 Rocket Lab Electron 火箭发射。
本研究重点是在四体问题的背景下研究利用太阳引力进入月球区域的低能量传输轨迹。具体来说,我们探索了双圆限制四体问题 (BCR4BP) 中的动力学结构。BCR4BP 是一种有用的模型,可用于在地球-月球和太阳-地球系统的复杂动力学都很重要的情况下进行初步轨迹设计。该模型在一个模型中包含了太阳、地球和月球的引力,同时降低了星历表模型中增加的扰动带来的复杂性。我们研究了 BCR4BP 中周期和准周期轨道的存在性和稳定性。庞加莱图表示来自这些轨道的流形结构信息,并允许构建纯弹道低能量传输到月球区域。这项研究的结果表明,利用 BCR4BP 中的动态结构有助于在地月空间中构建复杂的低能量传输。将这三个物体的引力纳入一个模型中,可以在设计过程中提供直观的理解。此外,展示这种设计策略在构建多种类型的地月轨道传输方面的灵活性可能会为未来的设计提供参考。
由于受月球引力的影响,地月空间物体的轨道是非开普勒轨道,无法通过一组简单的特征进行一般参数化。从地球上看,物体也更暗淡,移动速度相对较慢;预计探测和跟踪都会更加困难。在本文中,我们从地球和月球上假设的地面传感器的角度,回顾了一组可能的轨道及其预期的天文测量和光度特征。虽然可能存在多种轨道,但我们重点关注在会合框架中闭合(即周期性)并从平动点(圆形限制性三体问题的静止平衡)发出的特殊类型的轨道。我们研究了 31 个独立的元素周期轨道系列(Doedel 等人,2007 年),每个都是光滑流形。对于每个系列,我们生成一系列具有代表性的会合位置和速度,并基于多面卫星模型模拟预期的观测特征(例如赤经、赤纬、视星等)。在这项研究中,我们希望更好地了解遥感技术如何为地月空间中的航天器发挥作用,以支持下一代传感器架构,包括太空实验,例如 AFRL 的地月公路巡逻系统 (CHPS) 概念。
由于自然过程和/或人类活动而堆积在月球表面的灰尘很容易粘附在宇航服、光学设备和机械部件等物体上。这可能导致灰尘危害,而灰尘危害已被视为未来月球探索的技术挑战之一。过去几年,人们研究了几种除尘技术。这里我们介绍了一种利用电子束清除表面灰尘的新方法。最近关于静电除尘的研究表明,灰尘颗粒之间形成的微腔内二次电子或光电子的发射和吸收会导致周围颗粒上积聚大量负电荷。这些颗粒之间随后产生的排斥力会导致它们从表面释放。我们在实验中使用了细小的月球模拟颗粒(JSC-1A,直径 < 25 μ m)。清洁性能是根据电子束能量和电流密度、表面材料以及初始灰尘层厚度进行测试的。结果表明,使用优化的电子束参数(~230 eV 和 1.5 至 3 μ A/cm 2 之间的最小电流密度),在 ~100 秒的时间内,整体清洁度可达到 75 – 85%,具体取决于初始灰尘层的厚度。发现宇航服样品和玻璃表面的最大清洁度相似。未来的工作将侧重于去除最后一层灰尘颗粒以及使用紫外线 (UV) 光的替代方法。