保护敏感数据在各个领域至关重要,包括信息技术,网络安全和医疗保健记录。在大型网络中实施加密数据的精确访问策略至关重要。基于属性的加密(ABE)是解决此挑战的解决方案,同时启用加密和访问控制。由于量子计算的进步,量子安全措施的重要性越来越大,对加密数据的量子抗性访问控制机制的需求越来越不断提高,这是基于基于晶格的属性加密所指的。但是,一些现有的基于格子的安倍计划缺乏对细粒度访问政策的强大支持。本文介绍了改进的基于关键策略属性的加密(KP-ABE)方案,该方案扩展了超出阈值门以支持任何布尔电路。在无法区分的CPA游戏下,在选择性安全模型中以错误(LWE)的假设为基础,拟议方案的安全性基于学习。值得注意的是,该方案非常适合布尔函数的分离正常形式(DNF)表示,为加密数据提供了增强的灵活性和访问控制机制的安全性和安全性。
摘要 - 确定远程密码(SRP)协议是基于离散对数问题(DLP)的重要密码认证的密钥交换(PAKE)协议。该协议是专门设计的,旨在为各方使用会话密钥,并且由于其有吸引力的安全功能,它在各种情况下被广泛使用。作为增强板协议,服务器不存储密码等效数据。这使设法窃取服务器数据的攻击者不能伪装为客户,除非执行蛮力搜索密码。但是,量子计算中的进步有可能使基于经典DLP的公共密钥密码学方案不安全,包括SRP协议。因此,设计一种抵抗量子攻击的新协议是显着的。在本文中,基于基本协议,我们通过错误(LWE)问题从学习后构建了一个Quantum SRP协议。除了对已知量子攻击的阻力外,它还保持原始协议的各种安全质量。索引条款 - 远程密码协议,密码认证的密钥交换,错误学习。
摘要:量子计算确实对经典密码学构成了巨大威胁,从而危及物联网设备的安全。因此,本文致力于提出一种针对物联网 (IoT) 环境的抗量子同态加密 (QRHE) 系统。该 QRHE 密钥系统的主要观点基本上是保护物联网网络流量中的信息处理免受量子威胁。除此之外,该系统还允许在未事先解密的情况下处理加密信息的数据,从而保证了所处理数据的机密性和完整性。系统中使用的基于格的加密技术基于错误学习 (LWE) 问题,该问题已经显示出对经典和量子攻击的强大能力。本文介绍了一种同态加密算法,允许密文之间进行加法和乘法运算,以确保在安全数据聚合和分析过程中的隐私。实验结果表明,即使经过多次同态运算,所提出的系统仍能保持 98% 的高准确率,证明了其在保护数据机密性和完整性方面的有效性。虽然与传统方法相比,所提出的系统的计算成本略高,但它仍然为量子计算时代的物联网应用提供了全面的安全解决方案。
E - 英文 1 - 英文/粤语 C - 粤语 2 - 英文/普通话 P - 普通话 3 - 粤语/普通话 4 - 英文/粤语/普通话 5 - 其他:请参考课程大纲(代码 1、2、3 及 4 代表双语/三语课程 - 只适用于翻译及部分语言课程) STC - 本课程已获 AQAC 预先批准,基于教学原因,可于本学年转为以中文/粤语授课。 SVL - 含有服务研习部分的课程 SC - 选修此讲座/导修班的学生必须参与服务研习项目,计入/扣除总课时 SO - 选修此讲座/导修班的学生可选择性参与服务研习项目,计入/扣除总课时 LWE - 在最后一堂讲座/导修班或学期最后一周的某个时段举行的考试。教务处不组织在日历上公布的考试时间之外举行的考试(例如“上周考试”)。有关教师将公布详细安排。如果“上周考试”超过预定的上课时间或在预定的上课时间之外举行(例如多部门课程),学生应立即通知科目教师,如果与大学的其他课程和/或考试有时间冲突。 * 非学分课程
我们为量子计算 (BQP) 构建了一个经典可验证的简洁交互式论证,其通信复杂度和验证器运行时间在 BQP 计算的运行时间内是多对数的(在安全参数中是多项式的)。我们的协议是安全的,假设不可区分混淆 (iO) 和带错学习 (LWE) 的后量子安全性。这是普通模型中量子计算的第一个简洁论证;先前的工作(Chia-Chung-Yamakawa,TCC '20)需要长公共参考字符串和非黑盒使用以随机预言机建模的哈希函数。在技术层面,我们重新审视了构建经典可验证量子计算的框架(Mahadev,FOCS '18)。我们为 Mahadev 的协议提供了一个独立的模块化安全性证明,我们认为这是独立的兴趣。我们的证明很容易推广到验证者的第一条消息(包含许多公钥)被压缩的场景。接下来,我们将压缩公钥的概念形式化;我们将对象视为受约束/可编程 PRF 的泛化,并基于不可区分性混淆对其进行实例化。最后,我们使用(足够可组合的)简洁的 NP 知识论证将上述协议编译成完全简洁的论证。使用我们的框架,我们实现了几个额外的结果,包括
量子信息具有测量本质上是一个破坏性过程的特性。这一特征在互补原理中表现得最为明显,该原理指出互不相容的可观测量不能同时测量。Broadbent 和 Islam (TCC 2020) 最近的研究基于量子力学的这一方面,实现了一种称为认证删除的密码概念。虽然这个了不起的概念使经典验证者能够确信 (私钥) 量子密文已被不受信任的一方删除,但它并没有提供额外的功能层。在这项工作中,我们用完全同态加密 (FHE) 增强了删除证明范式。我们构建了第一个具有认证删除的完全同态加密方案——这是一种交互式协议,它使不受信任的量子服务器能够对加密数据进行计算,并且如果客户端要求,可以同时向客户端证明数据删除。我们的方案具有理想的特性,即删除证书的验证是公开的;这意味着任何人都可以验证删除已经发生。我们的主要技术要素是一个交互式协议,通过该协议,量子证明者可以说服经典验证者,以量子态形式出现的带错误学习 (LWE) 分布中的样本已被删除。作为我们协议的一个应用,我们构建了一个具有认证删除的 Dual-Regev 公钥加密方案,然后将其扩展到相同类型的 (分级) FHE 方案。我们引入了高斯崩溃哈希函数的概念 - Unruh (Eurocrypt 2016) 定义的崩溃哈希函数的一个特例 - 并在假设 Ajtai 哈希函数在存在泄漏的情况下满足某种强高斯崩溃性质的情况下证明了我们方案的安全性。
摘要。本文回顾了经典密码学中常见的攻击以及后量子时代针对 CRYSTALS-Kyber 的可能攻击。Kyber 是一种最近标准化的后量子密码学方案,依赖于格问题的难度。尽管它已经通过了美国国家标准与技术研究所 (NIST) 的严格测试,但最近有研究成功对 Kyber 进行了攻击,同时展示了它们在受控设置之外的适用性。本文讨论的攻击包括常见攻击、旁道攻击、SCA 辅助 CCA 和故障注入。在常见攻击部分,对对称原语的攻击、多目标攻击和利用解密失败的攻击都可以被视为不可行,而最近对模块 LWE 攻击的数据质疑了 Kyber 的安全级别。在旁道攻击部分,由于 Kyber 的恒定时间特性,时序攻击被证明是无用的,但 SASCA 攻击仍然可行,尽管很容易防御,缺点很少。然而,针对消息编码的攻击和使用深度学习的攻击都被证明是有效的,即使使用高阶掩码也是如此。LDPC 也被提议作为一种新的攻击框架,证明了其强大且具有发展空间。在 SCA 辅助 CCA 部分,EM 攻击和 CPA 攻击也都显示出潜力,但仍然难以防御。在故障注入部分,轮盘赌和容错密钥恢复都是最近提出的,数据证明了它们的有效性和防御难度。本文旨在为未来的研究人员提供洞察力,让他们了解应该关注哪些领域来加强当前和未来的密码系统。
摘要。在这项工作中,我们研究了公钥加密方案(PKE)的量子安全性。Boneh和Zhandry(Crypto'13)启动了该研究领域的PKE和对称密钥加密(SKE),仅限于经典的无法区分性阶段。Gagliardoni等。(Crypto'16)通过给出量子性阶段的第一个定义,提出了量子安全性的研究。对于PKE而言,另一方面,不存在具有量子性不可区分阶段的量子安全性概念。我们的主要结果是具有量子不可分性阶段的PKE的新型量子安全概念(QIND-QCPA),它缩小了上述差距。我们展示了针对基于代码的方案和具有某些参数的基于LWE的方案的区别攻击。我们还表明,即使不是基本的PKE方案本身不是,规范混合PKE-SKE加密结构也是QIND-QCPA-SECURE。最后,我们根据我们的安全概念的适用性对抗量子的PKE方案进行了分类。我们的核心思想遵循Gagliardoni等人的方法。使用所谓的2型操作员加密挑战消息。首先,2型操作员对于PKE来说似乎是不自然的,因为构建它们的规范方式需要秘密和公共密钥。但是,我们确定了一类PKE计划(我们称之为可恢复的计划),并表明对于此类类型2运算符仅需要公钥。更重要的是,可恢复的方案即使违反了解密失败,也可以实现2型操作员,这通常会阻止2型操作员规定的可逆性。我们的工作表明,包括大多数NIST PQC候选者和规范的混合构造在内的许多现实世界中的Quantum Quantum Peke方案确实是可回收的。
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
缩写 ABC 架空电缆 AC 咨询委员会 ACA 认可的补偿造林 ACF 助理森林保护员 AONBs 杰出自然风景区 APCCF 其他主要首席森林保护员 BRO 边境公路组织 CA 补偿造林 CA 主管当局 CAF 通用申请表 CAMPA 补偿造林基金管理和规划局 CAT 集水区处理 CBA 成本效益分析 CBA 含煤区(收购和开发)法案,1957 年 CCF 首席森林保护员 CEA 中央电力局 CF 森林保护员 CNG 压缩天然气 CPCB 中央污染控制委员会 CZA 中央动物园管理局 DCF 副森林保护员 DDA 德里发展局 DFO 森林分区官员 DGPS 差分地理定位系统 DoT 电信部 DPIIT 工业和国内贸易促进部 DSS 决策支持系统 DWPR 工作计划报告草案 EDS 寻求的基本细节EPA 环境保护法 ESZ 生态敏感区 FAC 森林咨询委员会 FFR 野外射击场 FRCM 每两周一次的区域协调会议 FRL 水库满水位 GIS 地理信息系统 GOI 印度政府 HEP 水电项目 HoFF 森林部队首长 ICMC 部际协调和监督委员会 IFA 1927 年印度森林法 KYA 了解你的批准 LAC 实际控制线 LoI 意向书 LWE 左翼极端主义 MDDA 马苏里 德拉敦发展局