在欧洲航天局资助的一项计划下,一种新型激光二极管模块已经创建并按照符合 ESCC-23201 的空间标准进行了测试。该模块由 Gooch & Housego 制造,即将进入欧洲航天市场,用于光信号处理和电信系统。发射来自 1550nm DFB 半导体激光二极管,该二极管以恒定的标称电流和温度驱动。结合优于 ±0.1nm 的波长稳定性和高达 3.2GHz 的内部数据速率,创新的子设计和封装提供了独特的功率能力,包括初始光纤功率 >90mW,典型电功耗 <4.1W,降至同类产品的 25%。AdvEOTec(法国)的验证测试表明,该产品符合一系列全面的航天标准,例如质子辐照、湿度、热/冷存储、快速减压、振动和 1,000g 冲击,以及对 ±8kV ESD、10 -5 mbar 真空和 100krad 伽马辐照的免疫力。Thales Alenia Space(法国)建立的寿命测试建模和生产筛选独特方法暂时确认了 15 年的航天标准使用寿命。所展示的航天标准产品旨在至少供应 5 年。
对于具有高压轨迹的微电子设备,可在真空环境中起作用,重要的是要知道真正的损坏电压对压力的影响以避免发生故障。Paschen定律在压力和距离变化时是众所周知的崩溃电压行为方程。它的常见数学表达[1]是在两个平行导电板的均匀字段假设下写的。最近有一些作品,其中一些特殊导体配置的不均匀的电晶体以及在真空中的PCB痕迹考虑的,压力高达10 -1 mbar [2]。也有关于均匀场,非常低的距离(10 UM及更近)和低真空的帕申曲线行为异常的报告[3,4]。在这里,我们介绍了对一种不均匀领域的paschen效应的研究,这是针对一种常见的PCB痕量构造的,距离距离为100 um,低真空度最高为10 -4 TORR。在本文的第2节中,我们提供了简化的理论估计,该理论估计使用Townsend标准对最小崩溃电压。在第3节中,描述了测量压力的崩溃电压依赖性的实验设置,并在第4节中提出了真空相机中PCB迹线的实验研究结果。
*指定范围 加工和储存(指导值) 准备 CW 1302 含有填料,这些填料会随着时间的推移而沉淀。因此建议在使用前仔细均质化容器中的所有内容物。在生产设备的储存容器中,应不时搅拌预填充的产品,以避免沉淀和计量不规则。 混合 最好在搅拌硬化剂之前将树脂加热到 40 – 50 °C 来制备铸造混合物。在 5 – 10 mbar 真空下对混合物进行短暂脱气可提高混合物的均匀性并增强铸件的介电性能。 固化 要确定交联是否已完成以及最终性能是否最佳,必须对实际物体进行相关测量或测量玻璃化转变温度。客户制造过程中的不同凝胶和固化循环可能导致不同的交联程度,从而导致不同的玻璃化转变温度。储存条件 根据标签上注明的储存条件将成分存放在密封的原装容器中,并放置在干燥的地方。在这些条件下,保质期将与标签上注明的有效期相对应。在此日期之后,产品只能在重新分析后进行处理。部分空的容器在使用后应立即盖紧。有关废物处理和火灾时分解的危险产物的信息,请参阅这些特定产品的材料安全数据表 (MSDS)。
YK 1265 是一款 60 kW 带外腔的电视速调管,已在电视发射机中验证了数年,并已在连续波应用中验证了上百次。由于其紧凑的设计,电磁聚焦所需的功率仅为 1 kW 左右。收集器适用于蒸汽、蒸汽冷凝或水冷却。该管可与固定频率腔一起使用(仅可调约490-510 MHz),专为 500 MHz 应用而设计,或与标准腔一起使用。这些腔体的优点是可以使用数字频率指示器进行连续可调,以便进行粗调,从而为连续波操作提供 470 Mhz 至 810 MHz 的频率范围。输出耦合可在很宽的范围内调节,以优化所有应用。有了改进的腔体、漂移管和插座空气冷却系统,速调管不需要单独的漂移管 5 管。所需空气约为。3.2 m /min,压降为 5.5 mbar 或 550 Pa。可实现 65 kW 的饱和输出功率,饱和效率为 45 k。增益大于 40 dB。束流电压为 25.5 kV,束流为 5.7 A。方便的备件储存和快速的库存交货是使用标准 TV 速调管及其标准配件进行连续波操作的两个优点。YK 1265 拥有经过充分验证的技术和长寿命预期。由于 YK 1265 的设计没有改变,因此监测体电流将有助于简化调谐过程。
AERZEN 旋转叶片压缩机经过优化,新增了尺寸。在气动应用或市政和工业废水处理中,工艺空气的生成非常耗能。当操作员为其工艺使用合适的压缩机时,他们可以节省能源。因此,广泛的 Delta Hybrid 旋转叶片压缩机系列得到了进一步开发、优化,并增加了三种尺寸。自 2010 年成功推出以来,Delta Hybrid 旋转叶片压缩机系列不断扩展。Delta Hybrid 共有 18 种尺寸,现在的体积流量为 110 m³/h 至 9.000 m³/h,驱动功率为 5.5 kW 至 400 kW。新款 Delta Hybrid D76S 的最大体积流量为 4,580 m³/h,驱动功率为 160 kW,弥补了高功率范围的差距。在低体积流量范围内,另外两种尺寸完善了产品组合,使该系列更加精细。除了新款 D19S(最大输出 1140 m³/h 和 45 kW)外,新款 D29S(最大输出 1740 m³/h 和 75 kW)也加入了产品系列。D76S、D29S 和 D19S 在标准压力范围内运行。D76H 和 D76E 型号的压力范围增加到 1.5 bar,真空范围增加到 -700 mbar。工厂制造商和运营商不仅可以从现在更精细的调整和由此产生的更好的性价比中受益,整个系列也得到了进一步开发和优化。这样,可以进一步发挥效率潜力
支持图4:氢等离子体对kg/au(111)样品的影响。a,附加到负载锁室的等离子体设置的图片。b,典型的概述STM图像,显示等离子处理前kg/au的形态(111)(i t = 1 pa,v s = 0.1 v)。c,暴露于氢等离子体5分钟后样品形态的STM图像(i t = 1 pa,v s = 0.1 V)。等离子体是通过匹配网络通过匹配的网络在距离样品中使用13.56 MHz射频(RF)发电机使用100W的13.56 MHz射频(RF)发电机创建的。放电期间的压力为P 1×10-2 MBAR。该RF功率通过外电极(表面)耦合到管子。样品面向等离子体通量(角度= 90°)。d,暴露于氢血浆(p = 100 w)的样品形态的STM图像,(i t = 1 pa,v s = 0.1 V)。与等离子体通量相比,样品的放牧发生率(角度= 0°)。血浆处理蚀刻Kg聚合物。金表面没有显示簇,但人字重建略微修饰。e,暴露于氢血浆(P = 20 W)的样品形态的STM图像,然后在470 K处将底物退火。样品未直接暴露于等离子体方向(角度= -90°)。利用血浆中产生的原子氢在避免表面溅射的同时,如主手稿中所述,这种方法导致kg羰基的减少。
Si 24 是一种新型开放框架硅同素异形体,在环境条件下处于亚稳态。与间接带隙半导体金刚石立方硅不同,Si 24 具有接近 1.4 eV 的准直接带隙,为光电和太阳能转换设备带来了新机遇。先前的研究表明,Na 可以从高压 Na 4 Si 24 前体的微米级颗粒中扩散,在环境条件下生成 Si 24 粉末。值得注意的是,我们在此证明 Na 在大型 (~100 µm) Na 4 Si 24 单晶中保持高度移动性。在真空条件下轻轻加热 (10 -4 mbar,125 °C),Na 很容易从 Na 4 Si 24 晶体中扩散出来,并可进一步与碘反应生成大型 Si 24 晶体,经波长色散 X 射线光谱测量,该晶体的硅含量为 99.9985 at%。 Si 24 晶体在 1.51(1) eV 处显示出尖锐的直接光学吸收边,带边附近的吸收系数明显大于金刚石立方硅。温度依赖性的电输运测量证实了从金属 Na 4 Si 24 中除去 Na 可得到 Si 24 的单晶半导体样品。这些光学和电学测量提供了对关键参数的深入了解,例如来自残留 Na 的电子供体杂质水平、减少的电子质量和电子弛豫时间。在块体长度尺度上有效除去 Na 和单晶 Si 24 的高吸收系数表明这种材料有望以块体和薄膜形式使用,并有望应用于光电技术。
图1:A。本研究中使用的颗粒和实验方案的特征。从上到下:VLP HIV,像人免疫缺陷病毒的粒子一样; MLV,鼠白血病病毒; HBV,肝素B病毒; AAV,Adeno相关病毒(血清型8和9);电动汽车,细胞外囊泡。需要荧光标记颗粒:可以通过基因组修饰(HIV和MLV的GFP标记)或直接通过在样品中添加荧光团(AAV和HBV的Yoyo-1,EVS的DIO)来实现。潜在的细胞DNA在VLP HIV和EV中以红色表示,MLV中的粉红色病毒RNA和HBV和AAV中的紫色病毒DNA表示。然后将样品稀释。大小由NTA确定HIV,MLV和EVS,以及AAV 37和HBV 38的冷冻EM重建。B.零模式波导设置,用于通过纳米孔转移的颗粒。顺式腔室包含荧光标记的颗粒。在施加压力时,颗粒在跨室中的孔中推动,并在孔末端越过evanevencent的田地区域时照亮。一旦他们离开了毛孔,他们就没有专心和漂白。C.事件的荧光演变是时间和粒子出口快照的函数。归一化强度表示为AAV时间的函数(紫罗兰和红点,平均在n = 50事件上)。通过最大强度分配强度获得归一化强度。时间在事件开始时被重新缩放至零,红点与事件发生前的强度相对应。指数衰减以蓝色表示。孔径400 nm,施加压力为0.5 mbar。帧速率:112 fps。插图:图像尺寸= 10 µm。
典型物理性质 以下数据是在巴斯夫公司实验室测得的。它们并不代表对我们销售产品的任何具有法律约束力的性质保证。值 倾点,℃ -68 闪点(COC),℃ 215 气味 温和 表面张力,mN/m 30.5 溶液温度,℃ 154 塑溶胶凝胶温度,℃ 150 蒸汽压@20℃,mbar < 0.01 溶解度@25℃,水中,mg/L < 0.01 粘度和密度数据 温度(℃) 动态粘度(cP) 密度(g/cm³) -40 1,173 0.968 -30 426 0.960 -20 188 0.952 -10 92.8 0.945 0 51.2 0.937 10 30.9 0.930 20 20.0 0.923 40 9.94 0.908 60 5.80 0.894 80 3.78 0.879 描述 Plastomoll ® DNA 是一种高效增塑剂,可赋予基础树脂出色的低温柔韧性和抗冲击性。因此,它广泛应用于基于乙烯基、硝化纤维素和橡胶的聚合物体系。用 Plastomoll ® DNA 增塑的乙烯基比用 DOA 增塑的挥发性小得多。它可溶于通常的有机溶剂,可与乙烯基中常使用的所有单体增塑剂混溶和兼容。 应用 Plastomoll ® DNA 可用于需要出色冷柔韧性和低挥发性的应用。 安全 Plastomoll ® DNA 不需要特殊处理。请按照良好的工业卫生和安全规范进行处理。佩戴个人防护设备,避免接触眼睛。如果发生眼睛接触,请用流动的水冲洗并联系医生。避免反复或长时间接触皮肤。提供足够的通风,避免吸入蒸气。有关安全的详细信息,请务必参考安全数据表 (SDS)。储存和处理 Plastomoll ® DNA 可在 40°C 以下储存一年(若排除水分)。包装 Plastomoll ® DNA 可散装、罐车或火车运输。
AICS 澳大利亚化学物质名录 atm 大气 CAS 化学文摘社(登记号) cm² 平方厘米 CO2 二氧化碳 COD 化学需氧量 摄氏度 (°C) 摄氏度 EPA(新西兰) 新西兰环境保护局 华氏度 (°F) 华氏度 g 克 g/cm³ 克/立方厘米 g/l 克/升 HSNO 有害物质和新生物体 IDLH 对生命和健康有立即危害 不混溶 液体之间不互溶。 inHg 英寸汞柱 inH2O 英寸水 K 开尔文 kg 千克 kg/m³ 千克/立方米 lb 磅 LC50 LC 代表致死浓度。LC50 是物质在空气中导致一组实验动物中 50%(一半)死亡的浓度。该物质在一定时间内被吸入,通常为 1 或 4 小时。LD50 LD 代表致死剂量。LD50 是一次性给予的某种物质的量,会导致一组实验动物中 50%(一半)死亡。ltr 或 L 升 m³ 立方米 mbar 毫巴 mg 毫克 mg/24H 毫克/24 小时 mg/kg 毫克/千克 mg/m³ 毫克/立方米 混合或可混合液体形成一个均匀的液相,无论存在的任一组分的量是多少。 mm 毫米 mmH2O 毫米水 mPa.s 毫帕每秒 N/A 不适用 NIOSH 国家职业安全与健康研究所 NOHSC 国家职业健康与安全委员会 OECD 经济合作与发展组织 Oz 盎司 PEL 容许接触限值 Pa 帕斯卡 ppb 十亿分之一 ppm 百万分之一 ppm/2h 每 2 小时百万分之一 ppm/6h 每 6 小时百万分之一 psi 磅/平方英寸 R 兰氏 RCP 倒数计算程序 STEL 短期接触限值 TLV 阈限值 tne 吨 TWA 时间加权平均值 ug/24H 每 24 小时微克 UN 联合国 wt 重量