8中国;北京Xicheng区Xicheng区北利希路167号,北京Xicheng区,8中国;北京Xicheng区Xicheng区北利希路167号,北京Xicheng区,
背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
摘要人工智能(AI)和机器学习(ML)正在彻底改变各个领域的人类活动,而医学和传染病并不能免除其快速和指数的增长。此外,可解释的AI和ML的领域已经获得了特别的相关性,并引起了人们的兴趣越来越大。传染病已经开始从可解释的AI/ML模型中受益。例如,在抗菌病毒预测和量子疫苗算法中,它们已被采用或提议更好地理解旨在改善2019年冠状病毒疾病诊断和管理的复杂模型。尽管有关解释性和可解释性之间二分法的某些问题仍然需要仔细关注,但对复杂的AI/ML模型如何得出其预测或建议的深入了解对于正确地面对本世纪传染病的日益严重的挑战变得越来越重要。
1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
1.54 英寸 IPS TFT 显示屏,分辨率为 240x240,可显示文本或视频 立体声扬声器端口用于音频播放 - 文本转语音、警报或创建语音助手。 立体声耳机输出,可通过立体声系统、耳机或有源扬声器播放音频。 立体声麦克风输入 - 非常适合制作您自己的智能家居助手 两个 3 针 JST STEMMA 连接器,可用于连接更多按钮 (http://adafru.it/4431)、继电器 (http://adafru.it/4409) ,甚至一些 NeoPixels!(http://adafru.it/3919) STEMMA QT 即插即用 I2C 端口 (https://adafru.it/Ft4) ,可与我们的任何 50+ I2C STEMMA QT 板 (https://adafru.it/NmD) 一起使用,或可用于连接到 Grove I2C 设备适配器电缆(http://adafru.it/4528)。5 向操纵杆 + 按钮用于用户界面和控制。三个 RGB DotStar LED 用于彩色 LED 反馈。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
摘要 人工智能 (AI) 和机器学习 (ML) 正在彻底改变人类各个领域的活动,医学和传染病也未能幸免于其快速而指数级的增长。此外,可解释的 AI 和 ML 领域已变得尤为重要,并吸引了越来越多的关注。传染病已经开始受益于可解释的 AI/ML 模型。例如,它们已被用于或提议用于更好地理解旨在改善 2019 年冠状病毒病诊断和管理的复杂模型、抗菌素耐药性预测领域和量子疫苗算法中。尽管一些有关可解释性和可解释性二分法的问题仍需认真关注,但深入了解复杂的 AI/ML 模型如何得出预测或建议,对于正确应对本世纪传染病日益严峻的挑战变得越来越重要。