类风湿关节炎(RA)是一种自身免疫性疾病,导致进行性关节损害。早期诊断和治疗至关重要,但由于RA的复杂性和异质性,仍然具有挑战性。机器学习(ML)技术可以通过识别多维生物医学数据中的模式来增强RA管理,以改善分类,诊断和治疗预测。在这篇评论中,我们总结了ML在RA管理中的应用。新兴研究或应用为RA开发了诊断和预测模型,这些模型利用了各种数据模式,包括电子健康记录,成像和多摩学数据。高性能监督的学习模型已证明曲线下的一个面积超过0.85,用于识别RA患者并预测治疗反应。无监督的学习揭示了潜在的RA亚型。正在进行的研究是将多模式数据与深度学习相结合,以进一步提高性能。然而,关于模型过度拟合,可推广性,临床环境中的验证和可解释性的关键挑战。少量样本量和缺乏多样化的人口测试风险高估了模型性能。缺乏评估现实世界临床实用程序的前瞻性研究。增强模型可解释性对于临床医生接受至关重要。总而言之,尽管ML表现出通过早期诊断和优化治疗,更大规模的多站点数据,可解释模型的前瞻性临床验证以及对不同人群进行测试的前瞻性临床验证的有望。由于解决了这些差距,ML可能会为RA中的精密医学铺平道路。
摘要 人工智能 (AI) 和机器学习 (ML) 正在彻底改变人类各个领域的活动,医学和传染病也未能幸免于其快速而指数级的增长。此外,可解释的 AI 和 ML 领域已变得尤为重要,并吸引了越来越多的关注。传染病已经开始受益于可解释的 AI/ML 模型。例如,它们已被用于或提议用于更好地理解旨在改善 2019 年冠状病毒病诊断和管理的复杂模型、抗菌素耐药性预测领域和量子疫苗算法中。尽管一些有关可解释性和可解释性二分法的问题仍需认真关注,但深入了解复杂的 AI/ML 模型如何得出预测或建议,对于正确应对本世纪传染病日益严峻的挑战变得越来越重要。
抽象的机器学习最近已成为寻找潜在量子计算优势的富有成果的领域。许多量子增强的机器学习算法批判性地取决于有效产生与存储在量子可访问存储器中的高维数据点的状态的能力。即使是对数据库中存储的许多条目的查询访问,其构造被认为是一次性开销,也有人认为,准备此类振幅编码状态的成本可能会抵消任何指数量子优势。在这里,我们使用平滑的分析证明,如果数据分析算法与小型入口输入扰动相对于较小的入门扰动,则可以通过持续的查询来实现状态准备。通常在现实的机器学习应用程序中满足此标准,其中输入数据对中等噪声进行了主观。我们的结果同样适用于量子启发的算法最近的开创性进度,其中专门构建的数据库足以在低级别病例中用于小聚集素的经典算法。我们发现的结果是,出于实用的机器学习目的,在具有量子算法或量子启发的经典经典算法的一般且灵活的输入模型下,在低级别病例的一般且灵活的输入模型下,可以进行多组载体的处理时间。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
方法:回顾性纳入了 62 名接受 FDOPA PET 和 MRI 检查的未接受治疗的胶质瘤患者。对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像用于体素特征提取。使用无监督两级聚类方法,包括自组织映射和 K 均值算法,并将每个类标签应用于原始图像。将肿瘤区域内每个类的标签对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线的曲线下面积 (AUC)、准确度和 F1-socore,并将其用作性能指标。
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >
自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
糖尿病足溃疡(DFUS)是糖尿病最常见且高度残疾的并发症之一,其特征是持续的脚步溃疡具有高感染率和截肢的风险,对患者生活质量和公共卫生系统构成了重大挑战(1)。根据数据预测,到2030年,全球糖尿病人口估计约为4.39亿(2)。在糖尿病患者中,大约30%的人会在其一生中出现足球溃疡(3),其中一部分患者因溃疡恶化而受到截肢的风险。研究表明,到2050年,三分之一的美国人将患有糖尿病,多达34%的糖尿病患者将在其一生中发展糖尿病足溃疡(DFU)(4)。DFU是成年糖尿病患者的严重并发症(5),一生中约有19%-34%的人足性溃疡,随着患者的年龄和医疗保健的复杂性,这种风险会增加(6)。DFU可以导致严重的结果,例如感染,截肢和死亡,在3 - 5年内复发率为65%(7),截肢率为20%,5年死亡率高达50%-70%(8)。尽管在多学科预防和早期筛查方面取得了进步,但在某些地区,截肢率却有所提高,尤其是影响年轻个人和少数群体,突出了DFU管理中的差异和不平等现象(9)。此外,糖尿病患者的免疫功能降低并降低了感染性(10),进一步增加了与DFU相关感染的风险(11)。在这些机制中,持续的炎症反应和组织受损(12)被认为是DFU的进展中的关键驱动因素。最近的研究表明,CXCR4基因在诸如细胞迁移,炎症调节和组织修复等过程中起重要作用(13),并且CXCR4的异常表达被认为是多种慢性条件下疾病进展的驱动力(14,15)。cxcr4在各种细胞类型(16)中表达,并通过其配体CXCL12调节细胞迁移,增殖和炎症反应(17)。研究表明,CXCR4在诸如DFU之类的慢性伤口中异常表达,可能导致
