机器学习:简介,基本概念:学习系统的定义,机器学习抽象机器学习的目标和应用是人工智能的一个子场,它使机器无需明确的编程即可学习和模仿智能人类行为或行动。位于统计,人工智能和计算机科学的融合中,是指导机器下一步采取什么行动的艺术,以数据驱动的见解为基础。此过程需要开发算法和模型,这些算法和模型可以通过体验式学习来增强其性能。机器学习围绕从数据中提取知识,促进计算机以学习,预测或制定数据告知的决策。在这种情况下,数据涵盖了各种类型的类型和格式,取决于特定的问题和任务性质。这些包含结构化数据,文本,音频,地理空间数据,图像,时间序列数据,视频,图形,财务数据,人类行为数据等。机器学习算法可以根据其学习方法分为几种类型。监督学习涉及针对分类和回归等任务的标记数据进行培训模型。无监督的学习可与无标记的数据一起用于诸如群集和降低尺寸的任务。强化学习专注于培训代理人通过与环境互动,以奖励或处罚的形式收到反馈来做出决策。深度学习利用具有多层的神经网络来处理复杂的数据,在图像和语音等任务中出色
摘要。现代神经界面的市场尽管不幸的是,尽管它的积极发展,但可以为用户提供许多现有的原型,这些原型具有相对较低的人类操作员控制效果的准确性和识别可靠性。此外,市场上的任何神经界面都必须分别针对每个操作员量身定制,这使得很难使其准确性,精度和可靠性客观化。解决上述问题的第一步是对本文介绍的现有神经接口技术市场的不同价格段进行比较分析。市场研究表明,尽管脑电图的缺点,但它是在神经界面系统中记录生物学信号的最易接收的非侵入性方法之一。为了促进未来的研究,已经考虑并分析了神经界面中已知模型和信号分析方法的主要优势和缺点。尤其是在信号预处理,诸如共同平均参考,独立组件分析,常见空间模式,表面拉普拉斯,常见的空间空间模式和自适应滤波等方法的信号预处理,优势和缺点的情况下。在评估信号的信息特征,模型和方法的分析基于自动锻炼的自适应参数,双线性自动化,多维自动进程,快速傅立叶变换,小波转换,波包分解的模型。此外,对人类神经界面操作员的控制效应的最常见鉴定方法(识别)的比较分析,即,判别分析的方法,参考矢量的方法,非线性贝叶斯分类器,邻居的分类器,人造神经网络的分类器。神经界面技术的研究为研究人员提供了更多的基础,以选择神经接口系统的数学,软件和硬件,并为新版本的开发提供了提高的准确性,可靠性和可靠性。
Calvino K. J. Chem。pharm。res。,2024,16(7):7-8毒理学,以发现趋势并预测新型化学物质的毒性。与常规
类风湿关节炎(RA)是一种自身免疫性疾病,导致进行性关节损害。早期诊断和治疗至关重要,但由于RA的复杂性和异质性,仍然具有挑战性。机器学习(ML)技术可以通过识别多维生物医学数据中的模式来增强RA管理,以改善分类,诊断和治疗预测。在这篇评论中,我们总结了ML在RA管理中的应用。新兴研究或应用为RA开发了诊断和预测模型,这些模型利用了各种数据模式,包括电子健康记录,成像和多摩学数据。高性能监督的学习模型已证明曲线下的一个面积超过0.85,用于识别RA患者并预测治疗反应。无监督的学习揭示了潜在的RA亚型。正在进行的研究是将多模式数据与深度学习相结合,以进一步提高性能。然而,关于模型过度拟合,可推广性,临床环境中的验证和可解释性的关键挑战。少量样本量和缺乏多样化的人口测试风险高估了模型性能。缺乏评估现实世界临床实用程序的前瞻性研究。增强模型可解释性对于临床医生接受至关重要。总而言之,尽管ML表现出通过早期诊断和优化治疗,更大规模的多站点数据,可解释模型的前瞻性临床验证以及对不同人群进行测试的前瞻性临床验证的有望。由于解决了这些差距,ML可能会为RA中的精密医学铺平道路。
摘要 - 当今的商业格局的特点是竞争和动态,这将人力资源管理转变为组织的基本战略合作伙伴。员工营业额会带来影响生产力和知识管理的风险。本研究的重点是使用机器学习(ML)模型来预测员工的离职。在培训过程中,使用了一个由4410个记录和29个变量组成的数据集,在培训和评估十种模型的过程中,遵循了人工智能(AI)方法。调查结果表明,XG增强分类器(XGBC)和随机森林(RF)模型达到了最佳准确性和性能率,为98.8%和98.7%。Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following费率:分别为88.4%,85.4%,84%,82.2%,83.0%,83.0%,55.0%。最后,可以得出结论,模型在预测中是有用且有效的。建议在人力资源管理策略中实施实际实施,以进行主动干预。
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
2 西北农林科技大学生命科学学院生物信息学中心、作物抗逆与高效生产国家重点实验室,陕西咸阳,3 西北农林科技大学农业部西北旱区玉米生物学与遗传改良重点实验室,陕西咸阳,4 俄罗斯科学院西伯利亚分院细胞学与遗传学研究所系统生物学系,俄罗斯新西伯利亚,5 俄罗斯帕特里斯·卢蒙巴人民友谊大学农业与技术学院,俄罗斯莫斯科,6 俄罗斯联邦卫生部莫斯科谢切诺夫第一国立医科大学(谢切诺夫大学)生物设计与复杂系统建模研究所信息与互联网技术系,俄罗斯莫斯科
渔业旁观,与商业或娱乐性的未经使用或未托管的物种的相互作用(Davies等,2009)对许多物种产生负面影响,包括死亡率,使旁观者的减少成为海洋保护和薄纱管理的主要重点2018; Nelms等人,2021年;当旁观物包含受保护的物种,例如海洋哺乳动物,海龟,鲨鱼和海鸟(Moore等,2009; Wallace等,2013; Lewison et al。,2014; Komoroske and Lewison和2015; 2015; 2015; 2015; 2015年;降低旁观可以提高商业曲折的效率和有效性(Richards等,2018; Noaa Fisheries,2022; Senko等,2022),并限制了由于高水平的受保护物种相互作用而导致的填充风险。然而,鉴于大多数bychip的物种的相互作用率低以及受保护物种相互作用的稀有发生率的较低相互作用率,估计杂草捕获的水平可能具有挑战性(McCracken,2004;Amandè等,2012; Martin等,2015; 2015年; Stock等,2019)。渔业管理计划和法规通常需要估算和监视给定层中给定物种的兼容量。根据管辖区的不同,过度的旁观,定义不同,可能会导致调整习惯的监管变化,弯曲齿轮的变化,限制性活动的限制或整个封闭式封闭。1362)。因此,准确,准确地确定在填充中旁观的水平的能力是填充管理的关键组成部分。在美国,《马格努森 - 斯文森渔业保护与管理法》(MSA),濒危物种法(ESA)和海洋哺乳动物保护法(MMPA)(MMPA)适用于旁观物种和填充物,并要求管理机构来监视旁注。在MSA(50CFR§600.350)下,应最小化或避免征用,而受保护的物种兼容不能超过ESA(50 CFR 216.3)下的允许采取或超过MMPA下潜在的生物移除水平(U.S.C.通常,为了实现旁观监测目标,训练有素的钓鱼者观察者被放置在钓鱼容器上,以监视受保护的物种相互作用,并记录捕获和旁捕虫(NOAA Fisheries,20222),因为这些信息不需要记录在日志中。这些观察者收集的数据用于通过各种统计或数学手段来估计填充中的兼例水平。在许多情况下,基于样本的比率估计器(例如广义比率估计器或Horvitz-Thompson估计器)可以提供对旁观的无偏估计(McCracken,2000,2019)。还实施了基于模型的估计,包括通用线性模型(GLM),零插入模型,跨栏模型,贝叶斯模型和广义添加剂模型(GAMS),以说明少数协变量对纤维状雪橇的影响(McCracken,2004; Martin等; Martin等,2015; 2015年; 2015年;从这种方法中估算的临界估计,然后进一步介绍了在给定时期内(通常为一年)对某些物种的兼容限制的过程(Moore等,2009),以及其他下游产品和
