摘要最近,由于在光学超材料,超敏感的等离激元纳米量学学,增强的非线性谐波产生等方面的吸引人的应用,血浆诱导的光学磁化吸引了人们对纳米光子学和等离子间学的研究兴趣。据我们所知,在这里,我们在实验和理论上首次观察到在超薄等离子体型纳米腔内的平面内磁性偶极共振,由二氧化硅涂层的金纳米球二聚体组成,并偶联到金薄膜。结合了多极膨胀和全波数值模拟,我们揭示了磁共振是由围绕球体二聚体和金膜包含的纳米厚的三角形区域循环的位移电流环引起的,从而导致腔隙间隙中的磁场强度极大地增强了磁场强度。在单粒子水平上使用极化分辨的深色场成像和光谱法,我们明确地“可视化”了诱导磁性模式的光谱响应和辐射极化,其特征与电偶极共振截然不同。我们进一步发现,磁共振频率高度取决于腔间隙厚度和纳米圈尺寸,从而可以直接从可见光到近红外区域进行简单的谐振调整,从而为磁共振增强的新途径增强了非线性光学光学和手性光学。
我们将本期特刊献给了Andrij Shvaika和Oleg derzhko,以庆祝他们的第60个候选人。如照片中所示,Andrij和Oleg一生都是同事,其中一个在小学时期向他们展示,另一个在2019年在LVIV举行的一次会议上向他们展示。Andrij和Oleg在同一研究所工作了数十年,也是《凝聚力物理学》杂志的副编辑。在本期特刊中庆祝他们两个是在努力。所选的贡献涵盖了与两个禧年的主要科学利益密切相关的广泛主题,以承认其对科学的独特和宝贵贡献。我们很高兴感谢所有通过将论文提交本期特刊的作者,所有匿名裁判,他们仔细阅读并进行了建设性地审查了他们的所有匿名裁判,以及在最终阶段关心特殊问题的冷凝物理学物理学。
近年来,生成式人工智能的使用量激增,为生活的许多领域开辟了众多新的可能性。这项令人振奋的技术有可能创造一切,从令人信服的深度伪造到基于文本描述的逼真图像。在音乐行业,人工智能通过创作新作品和制作独特的音景发挥了创造性的作用。语音合成已经发展到人工智能可以生成自然声音的地步,这些声音可用于有声读物和虚拟助手等各种环境。基于生成式人工智能的聊天机器人能够生成文本并理解自然语言,从而实现与人类的对话。然而,人们也担心生成式人工智能会对学校和教育等不同领域产生负面影响(Lo,2023 年)。由于生成式聊天机器人能够回答大量不同的问题,因此它还可用于完成书面作业或在考试中作弊。因此,有多个学校和大学禁止在校园内使用聊天机器人的记录(美国之音新闻,2024 年)。毫无疑问,聊天机器人有可能影响许多不同的行业和职业,学校和教育也不例外。学生应该学习如何有效地使用这些聊天机器人,并在合适的时间使用它们。此外,聊天机器人还可以减轻或帮助教师完成一些日常工作(Labadze 等人,2023 年)。然而,学生和教师应该如何使用生成式人工智能取决于其推理和理解与教育相关的概念的能力和能力。OpenAI 的聊天机器人 ChatGPT 于 2022 年 11 月 30 日发布后风靡全球。从那时起,生成式人工智能的发展急剧增加。谷歌开发了一个名为 Gemini 的 ChatGPT 竞争对手,谷歌声称它能够为学生提供有关各种数学和物理任务的有效和个性化反馈(谷歌,2023 年)。为了使聊天机器人能够有效地提供这种类型的交互式反馈,它必须能够解决学生寻求帮助的任务。大多数关于大型语言模型 (LLM) 性能的教育研究工作都基于 GPT-3.5 和 GPT-4 研究了 OpenAI 的 ChatGPT(Polverini 和 Gregorcic,2024b)。自该研究发布以来,已在许多领域开展了大量研究( Choi 等人,2022 年; Geerling 等人,2022 年)。,2023 ;Nori 等人,2023 )展示了 ChatGPT 的潜力和局限性(Brown 等人。,2020;Rae 等人。,2022;Borji,2023;Frieder 等人。,2023;Ji 等人。总体而言,基于订阅的 ChatGPT-4 被认为是 LLM 的最新成果(Gregorcic 等人。,2024 )。此前,Polverini 和 Gregorcic(2024b)已经证明了 ChatGPT 能够解决与“运动学图”相关的物理问题,来自运动学图理解测试(TUG-K)的学习效果一直受到限制。特别是,他们发现 ChatGPT 在“查看”和解释运动学图方面存在困难。尽管 ChatGPT 通常能够使用正确的物理推理并提供良好的问题解决描述,但其视觉限制确实造成了困难,导致 ChatGPT 在 TUG-K 中取得的总分与普通高中生相似(Zavala 等人,2017 年)。ChatGPT 在辅助学习方面的有效性
强关联过渡金属氧化物因其各种奇异现象而广为人知。稀土镍酸盐(如 LaNiO 3)就是一个典型例子,它们的电子、自旋和晶格自由度之间具有紧密的互连。将它们配对成混合异质结构可以进一步增强其特性,从而产生隐藏相和突发现象。一个重要的例子是 LaNiO 3 /LaTiO 3 超晶格,其中已经观察到从 LaTiO 3 到 LaNiO 3 的层间电子转移,从而导致高自旋状态。然而,迄今为止尚未观察到与这种高自旋状态相关的宏观磁序出现。本文利用 μ 子自旋旋转、X 射线吸收和共振非弹性 X 射线散射,直接证明了在 LaNiO 3 /LaTiO 3 界面上出现了具有高磁振子能量和交换相互作用的反铁磁序。由于磁性是纯界面性的,单个 LaNiO 3 /LaTiO 3 界面本质上可以表现为原子级薄的强关联准二维反铁磁体,有可能在先进的自旋电子器件中实现技术应用。此外,其强准二维磁关联、轨道极化平面配体空穴和分层超晶格设计使其电子、磁性和晶格结构类似于超导铜酸盐和镍酸盐的前体态,但具有 S → 1 自旋态。
本文介绍了研究人员工作的希腊幼儿园教学干预的设计、实施和结果,强调了人工智能 (AI) 工具对儿童学习磁性概念的重大积极影响。教学干预是作为幼儿园已经处理过的特定主题单元的扩展而实施的,使用 STEM 工具和新技术。共实施了 3 项使用 AI 应用的活动,总时长为 8 个教学小时。该方法基于体验式和跨学科方法以及合作和好玩的学习。幼儿园老师在实施行动和儿童评估过程中发挥了帮助和支持作用。孩子们以小组形式工作,小组成员主要在他们遇到困难时为他们提供支持。孩子们只在遇到与操作软件的技术困难有关的问题时才向幼儿园老师求助。教育干预通过全体会议中各小组的工作展示进行评估。在教育干预结束时,询问孩子们他们喜欢什么,觉得什么困难。当前行动的结果非常令人鼓舞,因为人工智能工具的使用特别激发了孩子们对整个过程的参与,并在他们的心理潜力方面发挥了支持和创造性的作用。
摘要:鉴于最近人们对纳米长度尺度上的光诱导磁性操控的兴趣日益浓厚,这项工作提出金属团簇是产生全光超快磁化的有前途的基本单元。我们使用时间相关密度泛函理论(TDDFT)在实空间中通过从头算实时(RT)模拟对金属团簇的光磁特性进行了理论研究。通过对原子级精确的简单金属和贵金属团簇中圆偏振激光脉冲等离子体激发的从头算计算,我们讨论了由于光场在共振能量下通过光吸收转移角动量而产生的轨道磁矩。值得注意的是,在近场分析中,我们观察到感应电子密度的自持圆周运动,证实了纳米电流环的存在,由于团簇中的逆法拉第效应(IFE),纳米电流环产生轨道磁矩。研究结果为理解量子多体效应提供了宝贵见解,该效应影响金属团簇中 IFE 介导的光诱导轨道磁性,具体取决于金属团簇的几何形状和化学成分。同时,它们明确展示了利用金属团簇磁化的可能性,为全光磁控领域提供了潜在的应用。
3. 一根导线连接到阻值为 R 的电阻器上,形成一个宽度为 L 、长度为 2L 的矩形环路。对环路施加外力,使环路始终以恒定速度沿 +x 方向移动,如图 1 所示。然后,环路进入区域 1,该区域具有大小为 B 的外部均匀磁场,磁场方向为 -:- 方向。区域 1 以 .x • L 和 .x • 2.SL 为边界。环路随后进入区域 2,该区域具有两个外部均匀磁场,每个磁场的幅度为 1F,彼此平行,但方向相反。区域 2 以 .x • 2.SL 和 .x • 3.SL 为边界。点 S 是环路前缘的中点,与区域 2 中分隔两个磁场的水平边界对齐。
2. 学生使用上图所示的装置进行实验,研究两个带电物体之间的力。该装置包含两个相同的导电球。上部球体连接到绝缘绳上,绝缘绳可用于将球体向下移动。下部球体位于绝缘杆上,绝缘杆位于电子天平上。在下部球体和绝缘杆就位之前,电子天平已归零。
电气是一类不寻常的材料,其中间质阴离子电子(IAES)被捕获在带正电荷的晶格框架的有序腔中。与调用离子晶体相反,在电气中,仅由晶体中的原子轨道引起的占用能带(BRS)的占用能带的组合不应分解,但必要性应包括以电气位置为中心的准原子轨道的BR。1,限制在阴离子空位位置的此类电子的波函数表现出独特的双重性,结合了由动能与库仑相互作用之间的竞争引起的强烈定位和空间范围。这种竞争导致实现了复杂的多体基础状态。在某些情况下,原子和间质电子子系统之间的耦合非常弱,以至于可以单独考虑后者,从而为纯量子电子系统中现象的实现和研究创造了一个显着的平台。2,3,这种治疗
moiré超晶格可用于控制材料的电子特性,并可以导致新兴的相关和拓扑现象。非连续性状态和域结构,但对磁性行为的有效操纵仍然具有挑战性。在这里,我们报告了扭曲的双重双层中的电气可调式磁力,即双层和在它们之间有扭曲角的双层 - 分层抗fiferromagnet铬三碘化物。使用磁光kerr效应显微镜,我们观察到具有非零净磁化的抗铁磁和铁磁阶的共存,这是Moiré磁性的标志。这样的磁态延伸到各种扭曲角度(在0°和20°以上的跃迁),并表现出非单调温度依赖性。我们还展示了电压辅助的磁切换。通过模拟的Moiré磁性相图支持了观察到的非平凡磁状态以及通过扭角,温度和电控进行控制。