电磁场(3-0-0)UPCEE303先决条件:1。Mathematics-I 2。数学课程结局在课程结束时,学生将展示能力1。了解电磁的基本定律。2。在静态条件下获得简单配置的电场和磁场。3。分析时间变化的电场和磁场。4。以不同形式和不同的媒体了解麦克斯韦方程。5。了解EM波的传播。模块1:(08小时)坐标系统与转换:笛卡尔坐标,圆形圆柱坐标,球形坐标。向量计算:差分长度,面积和体积,线,表面和体积积分,DEL操作员,标量的梯度,矢量和散射定理的差异,矢量和Stoke定理的卷曲,标量的Laplacian。模块2:(10小时)静电场:库仑定律,电场强度,电场,线,线,表面和体积电荷引起电流的边界条件。静电边界值问题:泊松和拉普拉斯方程,独特定理,求解泊松和拉普拉斯方程的一般程序,电容。磁边界条件。教科书:模块3:(06小时)Magneto静态场:磁场强度,生物 - 萨瓦特定律,Ampere的电路Law-Maxwell方程,Ampere定律的应用,磁通量密度 - 最大的方程。Maxwell方程,用于静态场,磁标量和向量电势。模块4:(10小时)电磁场和波传播:法拉第定律,变压器和运动电磁力,位移电流,麦克斯韦方程,最终形式,时谐波场。电磁波传播:有损耗的电介质中的波传播,损耗中的平面波较少介电,自由空间,良好的导体功率和poynting矢量。
描述基于感觉运动节律的脑机接口 (SMR-BCI) 用于获取与运动意象相关的脑信号并将其转换为机器控制命令,从而绕过通常的中枢神经系统输出。选择最佳的外部变量配置可以最大限度地提高 SMR-BCI 在健康和残疾人士中的表现。当 BCI 的目标是在严格监管的实验室环境之外的日常环境中使用时,这种性能现在尤为重要。在这篇评论文章中,我们总结并批判性地评估了当前有关外部变量对 SMR-BCI 性能的影响的知识体系。在评估 SMR-BCI 性能与外部变量之间的关系时,我们将其广泛地描述为不太依赖于 BCI 用户并且源自用户之外的元素。这些因素包括 BCI 类型、干扰因素、训练、视觉和听觉反馈、虚拟现实和磁电反馈、本体感受和触觉反馈、脑电图 (EEG) 系统组装的细致程度和 EEG 电极的定位以及记录相关伪影等因素。在这篇评论文章的最后,提出了关于外部变量对 SMR-BCI 性能影响的研究未来发展方向。我们相信,我们的评论对学术 BCI 科学家和开发人员以及在 BCI 领域工作的临床专业人员以及 SMR-BCI 用户都具有价值。
神经活动包含与认知相对应的丰富的时空结构。这包括跨越大脑区域网络的振荡爆发和动态活动,所有这些都可能在几十毫秒的时间尺度上发生。虽然这些过程可以通过脑记录和成像来访问,但由于其快速和短暂的性质,对其进行建模在方法上存在挑战。此外,有趣的认知事件的确切时间和持续时间通常是先验未知的。在这里,我们介绍了 OHBA 软件库动力学工具箱 (osl-dynamics),这是一个基于 Python 的软件包,可以在几十毫秒的时间尺度上识别和描述功能性神经成像数据中的递归动态。其核心是机器学习生成模型,这些模型能够适应数据并在几乎不做假设的情况下学习大脑活动的时间以及空间和光谱特征。 osl-dynamics 采用了最先进的方法,这些方法可以(并且已经)用于阐明各种数据类型中的大脑动力学,包括磁/脑电图、功能性磁共振成像、侵入性局部场电位记录和皮层脑电图。它还提供了大脑动力学的新颖总结测量方法,可用于帮助我们理解认知、行为和疾病。我们希望 osl-dynamics 能够通过增强快速动态过程建模的能力,进一步加深我们对大脑功能的理解。
神经活动包含与认知相对应的丰富时空结构。这包括跨大脑区域网络的振荡爆发和动态活动,所有这些活动都可能发生在数十毫秒的时间尺度上。虽然可以通过大脑记录和成像访问这些过程,但建模它们会由于其快速和短暂的性质而提出了方法论挑战。此外,有趣的认知事件的确切时机和持续时间通常是先验未知的。在这里,我们介绍了OHBA软件库Dynamics Toolbox(OSL-Dynamics),这是一个基于Python的软件包,可以识别和描述在时间尺度上的功能神经影像学数据中的复发动力学,就像数十毫秒一样。的核心是机器学习生成模型,能够适应数据并了解大脑活动的时机以及空间和光谱特征,几乎没有假设。OSL动力学结合了可以并且已被用来阐明各种数据类型中的大脑动力学的最先进方法,包括磁/电脑术,功能磁共振成像,侵入性的地方局部效果潜在的潜在记录和皮质图。它还提供了大脑动力学的新摘要措施,可用于告知我们对认知,行为和疾病的理解。我们希望OSL动力学能够通过增强快速动态过程的建模来进一步了解大脑功能。
教学大纲 模块 1 铅酸电池、镍镉电池、锂离子电池、磷酸锂电池、钛酸锂电池、镍金属、钠硫电池和铝空气电池的原理和构造。电池特性、电池额定值、容量和效率、电池的各种测试、电池充电技术。电池维护。模块 2 充电系统 充电系统组件、发电机和交流发电机、类型、构造和特性、电压和电流调节、切断继电器和调节器、直流充电电路。发电机起动系统 起动电机的要求、起动电机的类型、构造和特性、起动驱动机构、起动开关和螺线管。模块 3 点火系统 常规类型 - 电池线圈和磁电机点火系统电路细节和组件、火花塞 - 结构细节和类型、离心和真空提前机构、非接触式点火触发装置、电容放电点火、无分电器点火系统。照明系统 头灯和指示灯结构和工作细节、头灯聚焦、防眩目装置、汽车线路电路(喇叭电路、指示灯电路、电子燃油表、油压表、冷却液温度指示器)。模块 4 传感器和执行器:速度传感器、压力传感器:歧管绝对压力传感器、爆震传感器、温度传感器:冷却液和废气温度、废气含氧量传感器。
批准日期:2024 年 12 月 OPNAVNOTE 5400 Ser DNS-12/23U102077 2023 年 12 月 8 日 OPNAV 通知 5400 来自:海军作战部长 主题:解散舰队调查队 参考:(a) OPNAVINST 5400.44A (b) OPNAVINST 5400.45A 1.目的。批准美国舰队司令部 (USFLTFORCOM) 指挥官根据参考 (a) 提出的解散舰队调查队的请求。 2.范围和适用性。本通知适用于 USFLTFORCOM 指挥官;海军信息部队指挥官;海军海洋学办公室 (NAVO) 指挥官;以及舰队调查队 (FLTSURVTEAM) 指挥官。3.背景。除其他财政现实外,项目预算信息系统问题 16359 要求重新调整 FST 能力和人员。不过,水雷对抗舰、磁电机水动力、濒海测量和海军部港口测量能力仍然是海军海洋学的舰队要求。4. 组织变革。自 2023 年 10 月 1 日起解散 FLTSURVTEAM。5. 行动 a. USFLTFORCOM 指挥官将采取适当行动,与参考 (a) 一致,解散 FLTSURVTEAM。b. 主更新机构将通过消息系统删除中央目录组件中的 PLA,自 COMUSFLTFORCOM 向海军网络战司令部战术消息传递 (NAVNETWARCOM ESP-12) 提出请求后立即生效,地址为 112 Lake View Parkway, Suffolk, Virginia 23435-2696,电子邮件地址为 NNWC_C2OIX_REG@us.navy.mil;或致电 (757) 203-0338 或 0339。已解散的消息传递 PLA 仅应请求通过 OPNAV 5400 通知的消息传递系统停用。有关海军消息传递的更多信息,请访问 https://sailor.nmci.navy(.smil).mil 或通过本小节中的号码联系 NAVNETWARCOM 联系点。
磁流变 (MR) 阻尼器”,振动工程与技术杂志 (IF 0.35),第 9 卷,第 161-176 页,2021 年,https://doi.org/10.1007/s42417-020-00218-1。30. Vishwas Mahesh、Sharnappa Joladarashi 和 Satyabodh M Kulkarni。(2021 年)。“天然纤维增强弹性体基生物复合材料在牺牲结构应用中的损伤力学和能量吸收能力”,国防技术,17 (1),161-176,DOI:https://doi.org/10.1016/j.dt.2020.02.013(SCIE 索引,IF:2.637)。 31. C. Durga Prasad、Sharnappa Joladarashi、MR Ramesh、MS Srinath 和 BH Channabasappa。 “沉积在钛基体、硅上的 HVOF 涂层和微波处理的 CoMoCrSi-WC + CrC + Ni 和 CoMoCrSi-WC + 12Co 复合涂层的微观结构和滑动磨损性能比较 (2020)。https://doi.org/10.1007/s12633-020-00398-1。32. Vishwas Mahesh、Sharnappa Joladarashi 和 Satyabodh M Kulkarni。(2019)“黄麻/橡胶基柔性‘绿色’复合材料的附着力、柔韧性、层间剪切强度和损伤机理的实验研究”,热塑性复合材料杂志,DOI:10.1177/0892705719882074(SCIE 索引,IF:1.59 和 Scopus 索引)。 https://doi.org/10.1177/0892705719882074 33. Srikumar Biradar、Sharnappa Joladarashi 和 SM Kulkarni。(2020),“纤维缠绕玻璃/环氧复合材料吸水后的机械行为研究以及使用田口方法的摩擦学研究”,爱思唯尔材料今日论文集。 https://doi.org/10.1016/j.matpr.2020.02.834 34. Srikumar Biradar、Sharnappa Joladarashi 和 SM Kulkarni。(2019)“纤维缠绕玻璃/环氧复合材料的摩擦机械和物理特性”。材料研究快报(IF 1.44),(2019),DOI:10.1088 / 2053-1591 / ab3685。
神经外科或神经外科是一门医学专业,也称为脑外科,主要研究影响神经系统任何部分的疾病的预防、诊断、手术治疗和康复,包括大脑、脊髓、中枢和周围神经系统以及脑血管系统。神经外科方法在现代神经外科中,神经放射学程序用于诊断和治疗患者。计算机断层扫描 (CT)、磁共振成像 (MRI)、正电子发射断层扫描 (PET)、脑磁图 (MEG) 和立体定向放射外科是计算机辅助成像的例子。术中 MRI 和功能性 MRI 用于多种神经外科手术。在传统的开放式手术中,神经外科医生会在颅骨上钻一个大孔以进入大脑。显微镜和内窥镜目前正在用于涉及较小孔径的技术。小开颅手术与高分辨率显微镜神经组织观察相结合,可产生出色的效果。另一方面,开放式手术仍常用于创伤和紧急情况。在神经外科的几个部分,使用显微外科手术。在 EC-IC 搭桥手术和修复性颈动脉末端切除术中,应用了显微血管技术。动脉瘤夹闭是在显微镜下进行的。显微镜或内窥镜用于微创脊柱手术。显微外科手术用于包括显微椎间盘切除术、椎板切除术和人工椎间盘置换术在内的手术。神经外科医生可以使用立体定位通过小孔径定位大脑中的小目标。这用于功能性神经外科手术,例如在帕金森病或阿尔茨海默病的情况下,当电极
摘要 - SAMM(太阳活动MOF监视器)是一种基于地面的机器人仪器,已开发用于研究和不断监测太阳的磁性,重点是活动区域(ARS)。这些区域的特征是复杂的磁性结构,可能导致爆炸性事件通常与空间环境中大量粒子和物质弹出有关。与地球磁层相互作用时,它们可以对我们的基础设施(卫星,导航系统)和地面(发电厂和电网)中的基础设施构成威胁。基于钠(Na)和钾(K)磁铁光学过滤器(MOFS),SAMM提供了“层析成像”的视图,以在太阳能的不同高度下提供高节奏磁力图和多普勒格拉姆的磁性结构,从而提供了一个独特的数据集高度,从而提供了一个独特的数据集,以推动当前的空间范围的天气范围内的范围较高的空间范围。能够预先预测这些事件(甚至几个小时)是制定缓解策略的基本任务,以减少对地球上重要基础设施的潜在灾难性影响。在这种情况下,SAMM天文台已经意识到可以在全球网络中复制的“节点”,目的是持续覆盖太阳状况。该项目最初是由意大利经济发展部(MISE)在2015年通过软贷款赠款资助的,其发展和运营是在INAF - 罗马与那不勒斯天文学观测站与意大利小型企业(SME)Avalon Instruments的科学合作中进行的。经过三年的发展,SAMM处于调试阶段。在本文中,我们提出了最终的仪器描述以及第一光图像。
[*注:3901/3902/3903 中的任意一门核心课程] CHE-NEIST-2-3901*(核心课程)(任意一门)高级物理化学:2-0-0-2 热力学和化学动力学、量子力学、原子结构和光谱、双原子中的化学键、群论的化学应用、胶体和表面科学、表面活性剂、界面和界面特性、电化学。 CHE-NEIST-2-3902* (核心) (任意一门) 高级无机化学:2-0-0-2 无机化合物的结构与键合、配位化合物化学、化学与群论中的对称性、主群化学、有机金属化学、过渡金属化合物的电子光谱、磁化学、金属簇化合物、无机反应机理、金属配合物中的电子转移反应、生物无机化学(金属酶、作为氧载体的金属配合物、光合作用)、药物化学中的金属配合物、无机配合物催化作用。 CHE-NEIST-2-3903* (核心) (任意一门) 高级有机化学:2-0-0-2 立体化学、反应机理、CC 和 CX 键形成、逆合成分析、光化学、周环反应、反应中间体、不对称合成方法及其在全合成中的应用、氧化还原反应、有机催化、复分解反应。CHE-NEIST-2-3904 (选修) 高级分析化学:2-0-0-2 分析仪器、信号和噪声、光学分析方法概述:光学仪器组件、基于吸收、发射和散射的原子和分子光谱、电分析技术(基础电化学、伏安法、电位法)、分析分离和色谱法简介、GC、LC、质谱、电迁移技术、联用技术、检测器、石油精炼分析工具。 CHE-NEIST-2-3905(选修)高级有机金属化学:2-0-0-2 基础知识、18 价电子规则;使用分子轨道理论进行有机金属配合物的结构和键合。σ-供体配体: