安培使用铁粒子来可视化永磁体周围的磁条纹场。该技术的现代形式被称为 Bitter 磁装饰,由 Bitter、Hamos 和 Thiessen 于 1931 年首次应用。超导体研究促进了磁光成像的进一步发展,当时法拉第效应 [1] 首次用于此目的,使用磷酸盐玻璃和 EuS、EuF 2 和 EuSe [2,3] 薄膜。1957 年磷酸盐玻璃的应用成为磁光成像的重大突破,因为它首次实现了磁场强度的可视化,而不仅仅是条纹图案。然而,由于这种玻璃的维尔德常数很低,获得的磁光对比度很弱,必须使用厚玻璃层来增加它,这导致空间分辨率低。相反,EuS、EuF 2 和 EuSe 薄膜具有较大的维尔德常数(尤其是 EuSe 薄膜),因此薄膜(低于 1 m)可以产生足够高的磁光对比度,从而可以实现接近光学分辨率极限的高空间分辨率。但是,这种薄膜必须直接沉积在所研究的样品上,这使得整个过程困难且耗时。此外,这些薄膜仅在液氦温度下表现出磁光特性,这大大限制了它们的应用范围。另一种非常广泛使用的技术是磁光克尔效应 (MOKE) [4-9]。该技术不使用任何类型的磁性涂层,但磁光效应来自偏振光与样品本身的相互作用。因此,MOKE 可以提供高达光学极限的非常高的空间分辨率。缺点是样品通常需要特殊的表面处理,并且 MO 信号无法根据磁场进行校准,因为在没有样品的情况下无法测量参考信号。还有更多奇特的方法,例如使用趋磁细菌 [10,11] 和磁流体膜 [12]。虽然这些技术在可视化磁性微结构方面取得了成功,但无法校准,因此不能用于定量测量,也不适合标准化。
电磁场(3-0-0) 先决条件:1. 数学-I 2. 数学-II 课程成果 课程结束时,学生将展示以下能力:1. 理解电磁学的基本定律。2. 在静态条件下获得简单配置的电场和磁场。3. 分析时变电场和磁场。4. 理解不同形式和不同介质中的麦克斯韦方程。5. 了解电磁波的传播。模块 1:(08 小时)坐标系与变换:笛卡尔坐标、圆柱坐标、球坐标。矢量微积分:微分长度、面积和体积、线、表面和体积积分、Del 算子、标量的梯度、矢量散度与散度定理、矢量旋度与斯托克斯定理、标量的拉普拉斯算子。模块 2:(10 小时)静电场:库仑定律、电场强度、点电荷、线电荷、表面电荷和体积电荷产生的电场、电通量密度、高斯定律 - 麦克斯韦方程、高斯定律的应用、电势、E 和 V 之间的关系 - 麦克斯韦方程和电偶极子与通量线、静电场中的能量密度、电流和电流密度、点形式的欧姆定律、电流的连续性、边界条件。静电边界值问题:泊松和拉普拉斯方程、唯一性定理、求解泊松和拉普拉斯方程的一般程序、电容。模块 3:(06 小时)磁静场:磁场强度、毕奥-萨伐尔定律、安培电路定律-麦克斯韦方程、安培定律的应用、磁通密度-麦克斯韦方程。麦克斯韦静场方程、磁标量和矢量势。磁边界条件。模块 4:(10 小时)电磁场和波传播:法拉第定律、变压器和运动电磁力、位移电流、最终形式的麦克斯韦方程、时谐场。电磁波传播:有损电介质中的波传播、无损电介质中的平面波、自由空间、良导体功率和坡印廷矢量。教科书:
电磁场(3-0-0) 先决条件:1. 数学-I 2. 数学-II 课程成果 课程结束时,学生将展示以下能力:1. 理解电磁学的基本定律。2. 在静态条件下获得简单配置的电场和磁场。3. 分析时变电场和磁场。4. 理解不同形式和不同介质中的麦克斯韦方程。5. 了解电磁波的传播。模块 1:(08 小时)坐标系与变换:笛卡尔坐标、圆柱坐标、球坐标。矢量微积分:微分长度、面积和体积、线、表面和体积积分、Del 算子、标量的梯度、矢量散度与散度定理、矢量旋度与斯托克斯定理、标量的拉普拉斯算子。模块 2:(10 小时)静电场:库仑定律、电场强度、点电荷、线电荷、表面电荷和体积电荷产生的电场、电通量密度、高斯定律 - 麦克斯韦方程、高斯定律的应用、电势、E 和 V 之间的关系 - 麦克斯韦方程和电偶极子与通量线、静电场中的能量密度、电流和电流密度、点形式的欧姆定律、电流的连续性、边界条件。静电边界值问题:泊松和拉普拉斯方程、唯一性定理、求解泊松和拉普拉斯方程的一般程序、电容。模块 3:(06 小时)磁静场:磁场强度、毕奥-萨伐尔定律、安培电路定律-麦克斯韦方程、安培定律的应用、磁通密度-麦克斯韦方程。麦克斯韦静场方程、磁标量和矢量势。磁边界条件。模块 4:(10 小时)电磁场和波传播:法拉第定律、变压器和运动电磁力、位移电流、最终形式的麦克斯韦方程、时谐场。电磁波传播:有损电介质中的波传播、无损电介质中的平面波、自由空间、良导体功率和坡印廷矢量。教科书:
jbokor@berkeley.edu Spintronics领域涉及对固态设备中的旋转和电荷运输的研究。超快磁性涉及使用飞秒激光脉冲来操纵子秒时尺度上的磁性,包括无螺旋性无依赖性的全光开关。我们通过使用超快光电传输(Auston)开关使用Picsecond电荷电流脉冲结合了这些现象(图1)诱导铁磁GDFECO薄膜磁化的确定性,可重复的超快逆转[1]。使用9 ps持续时间电流脉冲,磁化强度在〜10 ps中反转,比任何其他电气控制的磁开关都要快一个数量级,并且展示了不需要旋转偏光电流或旋转旋转转移/Orbit/Orbit torques的根本新的电气开关机制。(图2)此外,开关所需的能量密度较低,投影仅需4 fj即可切换A(20 nm)3个单元。通过非平衡热激发的这种超快磁化逆转现象主要限于基于GD的Ferrimagnet,例如在图2所示的实验中使用的GDFECO合金。1和2。为了将这种快速开关与读数集成,需要具有高隧道磁力电阻(TMR)的磁性隧道连接。然而,对于使用GDFECO的设备报告的TMR值太小(≈0.6%),用于实际应用[2]。在存在面内对称性磁场的情况下,将电流脉冲应用于重金属/铁磁性薄膜异质结构。因此,切换具有独立光学脉冲的铁磁铁非常有趣,然后可以在高TMR存储器单元中作为存储层实现。We have shown how to transfer the ultrafast switching of GdFeCo to a ferromagnet (in our case Co/Pt multilayers) using Ruderman–Kittel–Kasuya– Yosida (RKKY) exchange coupling mediated HI- AOS of the ferromagnet layer driven by the HI-AOS of the ferrimagnet layer [3, 4].该技术通常适用于其他铁磁体,然后可用于使用高TMR的开关磁性结构状态进行MTJ读数。我们还表明,6-10 ps持续时间电流脉冲可用于直接和确定性地切换通过自旋 - 轨道扭矩(SOT)[5]的铁磁薄钴膜的平面外磁化。取决于相对电流
b imem-CNR研究所,帕科地区Delle Scienze 37/A 43124 Parma,Italia。*francesco.cugini@unipr.it摘要磁化材料的绝热温度变化的直接测量对于设计有效且环保的磁性冷却设备至关重要。这项工作报告了测量原理和主要实验问题的概述,这些问题必须考虑获得可靠的材料表征。根据有限差异热模拟和特殊设计的实验,讨论了非理想绝热条件,温度传感器的作用以及材料特定特性的作用。详细考虑了两种情况:薄样品的表征以及对快速场变化的热量响应的测量。最后,在具有一阶过渡的材料的情况下,讨论了不同测量方案的影响。1。引言制冷在我们的现代社会中起着基本作用:它渗透了我们的生活,并有助于人类的进化和健康。但是,它的成本超过了全球能源消耗的18%,并且这一数字不断增加二人组,以扩散发展中国家的制冷技术。1对实际气体压缩系统的这种巨大的能源需求和对环境的高度影响,紧急促进了新的环保解决方案。在新兴技术中,有磁制冷,它有望产生低生态影响,没有危险的液体,高效率和减少的电能消耗。2磁制冷是基于磁性效应(MCE),该效应由绝热温度变化(ΔTAD)或通过施加磁场的变化在磁性材料中诱导的等温熵变化(ΔST)组成。3通过磁场的周期性变化获得制冷剂循环。2四个元素对于建立磁冷却系统至关重要:磁化(MC)材料,磁场的来源,一种将材料相对移动到田间移动的机制以及用于传热的流体。通过应用或去除磁场引起的温度变化是导致传热的驱动力。这取决于材料的特性和施加磁场的强度。当前,最有前途的MC材料显示,在1 T的磁场变化中,可逆的ΔTAD为约3 K,这是可以用永久磁体组装而实现的。4–6尽管在过去的二十年中建造了许多磁性冰箱的原型,但竞争性MC设备的开发仍然需要更多执行的MC材料和新的智能技术解决方案。2,4,7除了对材料的磁性特性的基本研究外,寻找有效的冷却元素还需要测量其MC
