图 E 1 用于预测 MEG 活动的深度循环编码器 (DRE) 模型的表示。被掩蔽的 MEG pt ⊙ xt 从底部进入网络,连同控制表示 ut 和主题嵌入 s 。编码器使用卷积和 ReLU 非线性转换输入。然后,LSTM 对隐藏状态序列 ht 进行建模,并将其转换回 MEG 活动估计 ˆ xt 。Conv 1 d ( C in , C out , K, S ) 表示随时间进行的卷积,其中输入通道为 C in,输出通道为 C out,内核大小为 K,步幅为 S。类似地,ConvTransposed 1 d ( C in , C out , K, S ) 表示随时间进行的转置卷积。
脑磁图 (MEG) 是一种尖端的神经成像技术,它以无与伦比的高时间和空间精度组合测量认知过程背后的复杂大脑动态。MEG 数据分析始终依赖于先进的信号处理以及数学和统计工具来完成各种任务,从数据清理到探测信号的丰富动态,再到估计表面级记录背后的神经源。与大多数领域一样,人工智能 (AI) 的激增导致机器学习 (ML) 方法在 MEG 数据分类中的使用增加。最近,该领域的一个新兴趋势是使用人工神经网络 (ANN) 来解决许多与 MEG 相关的任务。本综述从三个角度全面概述了 ANN 如何用于 MEG 数据:首先,我们回顾了使用 ANN 进行 MEG 信号分类(即大脑解码)的工作。其次,我们报告了使用 ANN 作为人脑信息处理的假定模型的工作。最后,我们研究了使用 ANN 作为解决 MEG 方法问题(包括伪影校正和源估计)的技术的研究。此外,我们评估了目前在 MEG 中使用 ANN 的优势和局限性,并讨论了该领域未来的挑战和机遇。最后,通过详细描绘该领域并为未来提供实用建议,本综述旨在为经验丰富的 MEG 研究人员和对该领域有兴趣使用 ANN 来增强对 MEG 人脑复杂动态的探索的新手提供有益的参考。
许多脑部疾病迫切需要新的生物标记物;例如,轻度创伤性脑损伤 (mTBI) 的诊断具有挑战性,因为临床症状多样且不具特异性。EEG 和 MEG 研究已经证明了 mTBI 的几个人群水平指标,可以作为脑损伤的客观标记物。然而,从 EEG/MEG 信号中获取 mTBI 和其他脑部疾病的临床有用生物标记物受到个体间差异大(即使在健康人群中也是如此)的阻碍。在这里,我们使用多元机器学习方法从静息态 MEG 测量中检测 mTBI。为了解决病情的异质性,我们采用了规范建模方法,并将个体 mTBI 患者的 MEG 信号特征建模为相对于正常变化的偏差。为此,使用包含 621 名健康参与者的规范数据集来确定整个皮层功率谱的变化。此外,我们根据全规范数据的年龄匹配子集构建了规范数据集。为了区分患者和健康对照者,我们基于 25 名 mTBI 患者和 20 名未包含在常模数据集中的对照者的定量偏差图训练了支持向量机分类器。表现最佳的分类器利用了整个年龄和频率范围内的完整常模数据。该分类器能够以 79% 的准确率区分患者和对照者。对训练模型的检查显示,θ 频带(4-8 Hz)内的低频活动是 mTBI 的重要指标,这与早期研究一致。结果证明了使用 MEG 数据的常模建模结合机器学习来推进 mTBI 诊断和识别可从治疗和康复中受益患者的可行性。当前方法可应用于多种脑部疾病,从而为获取基于 MEG/EEG 的生物标志物提供基础。
Azhari, A., Truzzi, A., Neoh, MJ-Y., Balagtas, JPM, Tan, HH, Goh, PP, … Esposito, G. (2020)。婴儿神经影像学研究的十年:我们学到了什么,我们将继续前进吗?婴儿行为与发展,58,101389。https://doi.org/10.1016/j.infbeh.2019.101389 Bagic, AI、Knowlton, RC、Rose, DF、Ebersole, JS 和 ACMEGS 临床实践指南 (CPG) 委员会。(2011)。美国临床脑磁图学会临床实践指南 1:自发性脑活动的记录和分析。临床神经生理学杂志, 28 (4), 348 – 354。https://doi.org/10.1097/WNP。0b013e3182272fed Ballard, A., Le May, S., Khadra, C., Filoa, JL, Charette, S., Charest, M.-C., … Tsimicalis, A. (2017)。分心工具包用于急诊科接受疼痛手术的儿童疼痛管理:一项初步研究。疼痛管理护理, 18 (6), 418 – 426。https://doi. org/10.1016/j.pmn.2017.08.001 Bell, MA, & Cuevas, K. (2012)。使用 EEG 研究认知发展:问题与实践。认知与发展杂志, 13 (3), 281 – 294。https://doi.org/10.1080/15248372.2012。691143 Birg, L., Narayana, S., Rezaie, R., & Papanicolaou, A. (2013)。技术提示:镇静状态下的 MEG 和 EEG。神经诊断杂志, 53 (3), 229 – 240。https://doi.org/10.1080/21646821.2013.11079909 Bosseler, AN, Clarke, M., Tavabi, K., Larson, ED, Hippe, DS, Taulu, S., & Kuhl, PK (2021)。使用脑磁图检查 14 个月大婴儿的单词识别、侧化和未来语言技能。发育认知神经科学,47,100901。https://doi.org/10.1016/j.dcn.2020.100901 Bowyer, SM、Zillgitt, A.、Greenwald, M. 和 Lajiness-O'Neill, R. (2020)。使用脑磁图进行语言映射:临床研究和实践现状更新以及临床实践指南的考虑。临床神经生理学杂志,37 (6),554 – 563。https://doi.org/10.1097/wnp.0000000000000489
摘要 目的。本研究的目的是通过机器学习方法识别受试者之间共享的相位耦合模式,该方法利用来自工作记忆 (WM) 任务的源空间脑磁图 (MEG) 相位耦合数据。事实上,神经振荡的相位耦合被认为是远距离大脑区域之间通信的关键因素,因此在执行认知任务(包括 WM)时至关重要。以前研究认知任务期间相位耦合的研究通常集中在几个先验选择的大脑区域或特定频带上,并且已经认识到需要数据驱动的方法。机器学习技术已成为分析神经成像数据的宝贵工具,因为它们可以捕捉多元信号分布中的细粒度差异。在这里,我们期望这些应用于 MEG 相位耦合的技术可以揭示个体之间共享的 WM 相关过程。方法。我们分析了作为人类连接组项目的一部分收集的 WM 数据。当受试者 (n = 83) 在两种不同条件下执行 N -back WM 任务时收集 MEG 数据,即 2-back(WM 条件)和 0-back(控制条件)。我们估计了这两种条件以及 theta、alpha、beta 和 gamma 波段的相位耦合模式(多元相位斜率指数)。然后使用获得的相位耦合数据训练线性支持向量机,以便使用跨受试者交叉验证方法对受试者正在执行的任务条件进行分类。分类是根据来自各个频带的数据和所有频带的组合(多频带)分别进行的。最后,我们通过特征选择概率评估了不同特征(相位耦合)对分类的相对重要性。主要结果。分别根据 theta(62% 准确率)和 alpha 波段(60% 准确率)中的相位耦合模式成功地对 WM 条件和控制条件进行了分类。重要的是,多波段分类表明,不仅在 theta 和 alpha 波段,而且在 gamma 波段中的相位耦合模式也与 WM 处理有关,分类性能的提高 (71%) 证明了这一点。意义。我们的研究使用 MEG 源空间功能连接成功解码了 WM 任务。我们的方法结合了跨主题分类和我们小组最近开发的多维指标,能够检测到个体之间共享的连接模式。换句话说,结果可以推广到新的个体,并允许对与任务相关的相位耦合模式进行有意义的解释。