经常导致创建由纯属金属或几层纯金属组成的涂料,另一种是纯金属,每种金属都有特殊目的。然而,合金沉积并不少见。用于印刷电路和Fe-Ni的PB-SN合金作为录音行业中的软磁铁,已用于长石灰[7,8]。最近,对微机械系统(MEMS)中用作硬磁体的PT-CO合金非常感兴趣[9,10]。与Ni或CO的W和RE合金的电镀也在近年来获得了高温或高耐磨性耐药性的兴趣[11,12]。比化学或物理蒸气沉积的方法(CVD和PVD)具有多种优势。其中包括低成本,低温施用,厚度的均匀性或成反比设计的nuni形式(即,仅在表面上的特定区域涂层)[13,14]。
• Dates (from – to) October 1989 - present • Occupation or position held Researcher (engineer in Materials Science and Engineering, junior researcher (1990-2000), senior researcher (2000 - present) • Main activities and responsibilities - preparation and characterisation of permanent magnets obtained from hard magnetic materials based on rare earths: Sm-Co and NdFeB, processed by sintering, bonding or injection of the powders or as Nd-Fe-B magnetic纳米复合材料 - 基于FE-CU,NI-CR-FE CO-NI-MN-P合金的磁性合金的磁性纳米颗粒•电气工程ICPE-CA Bucharest(前ICPE)(前ICPE),高级材料部的雇主国家研发研究所的名称和地址 and Engineering Faculty • Type of business or sector Education • Dates (from – to) Oct.1986 – Oct. 1989 • Occupation or position held Materials Science and Engineering graduate • Main activities and responsibilities Preparation of stainless steel in electric arc furnaces, steels remolding under slag for AERO and CNE applications • Name and address of employer COS Targoviste, Electrical Steelworks 1 and Unit for Electrical Remolding under Slag • Type of business或钢的部门生产
自从发现基于铁的超导体(IBSS),使用它们的超导电线和磁带的开发已被广泛进行[1]。在100 koe和4.2 k的Ss/ag-sheathed(ba,k)fe 2中,已在2.6 x 10 5 a/cm 2的最高J C中获得了2个胶带,这些胶带是根据严重的塑性变形方法制造的[2]。圆形电线的开发也快速发展,在100 KOE和4.2 K时的最高J C值为7.1x 10 4 A/cm 2,接近1 x 10 5 A/cm 2的实际水平[3]。使用这样的圆形电线,已经制造了示范线圈,并且成功生成了高达2.8 KOE的场[4,5]。鉴于IBS圆线电线的实际应用中,仍有几个问题要解决。圆形线直径的降低对于减少交流的损耗和促进各种形状的超导磁体的电线损失过程很重要,如MGB 2电线所证明的那样[6]。
量子计算 算法开发和新型计算范式 使用新兴技术(量子、机器学习、HPC、...)解决工业问题 无序系统(自旋、电子、量子、涡旋和结构玻璃) 空间辐射模拟 一般计算研究(冷气体、雪崩和磁滞、单分子磁体等)
• 霍尔效应测量表明,VO x 薄膜的室温电阻率至少比 77 K 时低 3 个数量级。• Z. Yang 等人,“钒氧化物涂层用于自调节高温超导电缆和磁铁中的电流共享”,《应用物理学杂志》128,055105 (2020)
摘要。磁性纳米颗粒提供了许多有希望的生物医学应用,例如磁性药物靶向。在这里,人体内部的磁性药物载体通过外部磁场将其针对肿瘤组织。但是,治疗的成功很大程度上取决于药物载体的量,达到了所需的肿瘤区域。此转向过程仍然是一个开放的研究主题。在本文中,先前对线性halbach阵列的研究是由额外的halbach阵列所表明的,在两个相邻磁体之间具有不同的杂志角度,并使用comsol多物理学进行数字化。hal-bach阵列用永久磁铁排列,并在具有强梯度的同时,将相对较大的区域较大,高磁场。这会以强烈的磁力为单位,将许多颗粒捕获在磁铁处。之后,为避免粒子团聚,将halbach阵列闪烁到其弱的一侧。因此,计算具有磁化方向不同星座的不同HALBACH阵列的磁性弹力密度,其梯度和所得的磁力。由于梯度的计算可能会导致由于COMSOL中使用的网格而导致的高误差,因此通过研究两个不同的拟合函数来得出梯度分析。彻底的是,具有90°移动磁化的阵列表现最佳,轻松更改阵列的磁性边,并扭曲更多的颗粒。此外,结果表明,与SPION上的其他现有力相比,磁力在磁体下方占主导地位。总而言之,结果表明磁力,因此可以使用低成本的永久磁铁来对颗粒被洗净的区域进行验证。
特邀演讲 OLIVER GUTFLEISCH (289) 2025 年材料日主题为“能源材料”,苏黎世联邦理工学院,2025 年 5 月 7 日 (288) MRS 研讨会:可持续冷却的固体材料:热量效应和设备,2025 年 MRS 春季会议和展览,美国西雅图,2025 年 4 月 7 日至 11 日 (287) MRS 研讨会:新兴技术中的关键原材料,2025 年 MRS 春季会议和展览,美国西雅图,2025 年 4 月 7 日至 11 日 (286) 绿色能源的可持续磁体,2025 年 TMS 年会磁学和磁性材料进展研讨会,美国内华达州拉斯维加斯,2025 年 3 月 23 日至 27 日 (285) 高性能磁性材料 – Schlüsselwerkstoffe für die Energietransformation ,42. Hagener Symposium 2024 Pulvermetallurgie,哈根,2024 年 11 月 28 日 - 29 日 (284) 用于高效能源、运输和冷却应用的先进磁性材料,Physikalisches Kolloquium,奥格斯堡大学,2024 年 11 月 18 日 (283) 用于高效能源、运输和冷却应用的先进磁性材料,中国科学院物理研究所中关村论坛,北京,2024 年 8 月 27 日 (282) 用于能源转换、传输和冷却应用的磁性材料的磁滞设计,德中磁学研讨会,北京,中国,2024 年 8 月 25 日 (281) 粉末和粉末基加工的 Ni-Mn-Sn 多热 Heusler 合金中的马氏体转变和热效应,Thermag 2024,第 10 届 IIR 热冷却与热材料应用会议,中国包头,2024 年 8 月 21 日至 24 日 (280) 用于柔性传感和执行器的可持续磁性材料,ICM 2024 博洛尼亚,焦点研讨会:磁性结构中的应变、纹理和弯曲,2024 年 7 月 1 日至 5 日 (279) 用于柔性传感和执行器的可持续磁性材料,E-MRS 2024 年春季会议 - 研讨会 R“非常规电子和可持续柔性传感技术的进展”,2024 年 5 月 28 日 (278) 高性能永磁体领域的最新开发,VDA 汽车工业协会,AK 循环经济/AK 电磁兼容,2024 年 5 月 7 日,阿尔策瑙 (277) 永磁体和磁热材料- 从基础到能源应用(由 K. Skokov 博士讲授),第 3 届 EMFL 学校 - 高磁场科学,德累斯顿,2024 年 4 月 15 日 - 19 日(276) 磁性材料宏观和微观功能特性的关联探测(由 A. Aubert 博士讲授),意大利-德国 WE-Heraeus 研讨会“关联材料表征的前沿:样品、技术、仪器和数据管理”,2024 年 4 月 2 日至 4 月 5 日。(275) 电动汽车和风能用永磁体的可持续性:稀土的减少、替代和回收,IRTC 会议 2024 可持续未来的原材料,意大利都灵,2024 年 2 月 21-23 日(274) 磁性材料在能源转型中的作用,第八届意大利磁学协会 (AIMAGN) 会议 Magnet-2024,2024 年 2 月 7-9 日,米兰 (273) 用于利用磁滞冷却循环的多热材料,德累斯顿磁热日,2023 年 11 月 13-14 日 (272) 未来磁铁的可持续性及其应用,磁性材料和应用 2023,英国磁学学会,2023 年 11 月 7-9 日,哈瑙 (271) 电动汽车和风力发电永磁体的可持续性:稀土的减少、替代和回收,acatech - 专题会议“材料 - 有价值的材料 - 原材料。循环材料系统对弹性和可持续原材料供应的贡献”,2023 年 11 月 7 日,慕尼黑 (270) 电动汽车和风力发电用永磁体的可持续性:稀土的减少、替代和回收,第 9 届鲁尔循环经济功能材料研讨会,2023 年 10 月 17 日,杜伊斯堡 (269) 未来永磁体的可持续性及其应用,REPM 2023,英国伯明翰,
摘要:背部和脊柱相关问题是大多数人一生中经常遇到或将要遇到的疾病。可以做出的一个常见且明智的观察是关于个人的姿势。我们提出了一种新方法,将加速度计、陀螺仪和磁力计传感器数据与永磁体相结合,组装成一个可穿戴设备,能够实时监测脊柱姿势。每个用户都需要对设备进行独立校准。传感器数据由概率分类算法处理,该算法将实时数据与校准结果进行比较,验证数据点是否位于计算阈值定义的置信区域内。如果加速度计和磁力计都将姿势分类为不正确,则认为姿势分类不正确。在单个成年测试对象中进行了试点试验。磁铁和磁力计的组合大大提高了姿势分类准确度(89%),而仅使用加速度计数据时获得的准确度(47%)则为准确度。该方法的验证基于图像分析。
•高容量电池100天报告•碳捕获材料•电网,包括变压器和高压直流电流•能源•储能•燃料电池和电解室•包括抽水储存水力发电的水电•核能•核能•核能•铂金属金属和其他催化剂•催化剂•隔离•隔离•竞争力•竞争力•竞争力•竞争力•竞争>竞争>竞争>竞争>竞争>竞争>竞争>竞争>竞争>
