缓解,这意味着试验的随机化被打破。EAG进行了幼稚的ML-NMR比较,该比较表明,在公司的ML-NMR中应用的人口调整比Midostaurin相比,尤其是在累积的Rellapse分析中。委员会指出,两种间接治疗比较的大多数结果均未显示Quizartinib比Midostaurin的统计学显着改善,除了MAIC结果是复发的累积发生率。一位临床专家说,通常很难解释总体生存结果,因为有很多因素需要考虑。他们说复发率是最重要的结果。他们补充说,与Midostaurin相比,Quizartinib的复发速率可能较低,因为它是针对FLT3-ITD突变的。委员会得出的结论是,两种间接治疗比较的结果都高度不确定。但它
Raymond APY,2024年11月12日,第2页,将筛选干燥的混合物的粒径,然后在天然气体式窑炉内的加压,旋转的无氧反应堆(钙)中,在高达1,300°F的温度下进行热解。sbs表示热解输出将是化学稳定的无机固体(生物炭)和合成气(Syngas)。生物炭将被冷却,水合,沉淀和作为土壤修订产品出售。syngas - 由甲烷,硫和挥发性有机化合物(VOC)组成,从生物固醇和木材混合物中解析出来 - 将燃烧在热氧化剂中。氧化剂的热量将回收到旋转干燥器。将通过一系列空气污染控制装置来造成各种过程的排气,并通过115英尺高的堆栈排出到大气中。
这些标签有助于根据内容和类型整理收到的电子邮件。社交:来自社交媒体平台和其他社交网站的电子邮件。更新:与确认、收据、账单或其他交易信息相关的电子邮件。论坛:来自在线论坛和讨论组的电子邮件。促销:与营销、新闻通讯和促销内容相关的电子邮件。
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
本文通过利用大型预训练模型来探讨合成数据的潜力,尤其是在面对分布变化时。al-尽管生成模型的最新进展已经阐明了跨分布数据发生的几项先前的作品,但它们需要模型调整和复杂的设置。为了绕过这些缺点,我们介绍了主要的g a a a a a a a a embeddings(doge),这是一个跨分布的插件语义数据augpection框架,几乎没有射击设置。我们的方法以潜在形式提取源和所需数据分布之间的差异,然后引导生成过程,以补充无数多种合成样本的训练集。我们的评估是在几个射击范式下进行亚种群偏移和三个领域适应方案进行的,表明我们的多功能方法改善了各个任务的性能,需要进行动手干预或复杂的调整。Doge铺平了毫不费力地生成遵循测试分布的现实,可转让的合成数据集的道路,从而加强了下游任务模型的现实世界效率。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
为知识和信息管理理事会(KIMD)提供服务,为工作计划的实施提供高质量的协调支持,有助于建设新西兰国防军的信息管理基础能力。2021/22 Frank It Limited 咨询服务 为通信信息服务(DDG)分支机构提供敏捷教练咨询。2021/22 Frank It Limited 咨询服务 为通信信息服务(DDG)分支机构提供敏捷教练咨询。2021/22 Frank It Limited 咨询服务 为通信信息服务(DDG)分支机构提供敏捷教练咨询。
电子邮件:solaja.oludele@oouagoiwoye.edu.ng摘要 - 塑料废物污染在全球范围内构成了重大的环境挑战,尤其是在尼日利亚等发展中国家,其中有限的废物管理基础设施加剧了问题。本文研究了人工智能(AI)技术解决发展中国家塑料废物的潜力,重点是尼日利亚的情况。通过对挑战,机遇,案例研究,政策含义和建议的全面分析,本文强调了AI在废物管理中的变革性作用。挑战诸如基础设施差距,数据稀缺和道德考虑之类的挑战,以及创新,效率和可持续性的机会。发达国家和发展中国家的案例研究说明了在收集,分类,回收和污染监测中成功的AI应用程序。政策的影响强调了全面立法,基础设施和技术投资,公众意识和跨部门合作的重要性。建议包括扩展的生产者责任政策,垃圾填埋场,教育运动和国际合作。发展中国家AI驱动的塑料废物减少的未来取决于技术进步,协作伙伴关系,投资增加,支持性政策和监管框架。通过利用AI技术和集体行动的力量,发展中国家可以解决塑料废物危机,促进环境可持续性,并为所有人提供更清洁,更绿色的未来。关键字 - 减少塑料废物,AI技术,发展中国家,废物管理,环境可持续性doi:http://dx.doi.org/10.14710/wastech.12.1.28-38 [如何引用本文:Solaja,O。M.(2024)。释放了人工智能的力量:革命性的塑料废物管理为发展中国家的可持续发展。废物技术,12(1),28-38 doi:http://dx.doi.org/10.14710/wastech.12.1.28-38]简介
抽象的超分辨率(SR)是一个不当的反问题,其中具有给定低分辨率图像的可行解决方案集的大小非常大。已经提出了许多算法,以在可行的解决方案中找到一种“好”解决方案,这些解决方案在忠诚度和感知质量之间取得了平衡。不幸的是,所有已知方法都会生成伪影和幻觉,同时试图重建高频(HF)图像细节。一个有趣的问题是:模型可以学会将真实图像细节与文物区分开吗?尽管有些重点侧重于细节和影响的分化,但这是一个非常具有挑战性的问题,并且尚待找到满意的解决方案。本文表明,与RGB域或傅立叶空间损耗相比,使用小波域损失功能训练基于GAN的SR模型可以更好地学习真正的HF细节与伪像的表征。尽管以前在文献中已经使用了小波域损失,但在SR任务的背景下没有使用它们。更具体地说,我们仅在HF小波子带上而不是在RGB图像上训练鉴别器,并且发电机受到小波子带的忠诚度损失的训练,以使其对结构的规模和方向敏感。广泛的实验结果表明,我们的模型根据多种措施和视觉评估实现了更好的感知延续权权衡。